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Participatory Traffic Control
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Source: https://flow-project.github.io/

- Utilizing connected and automated vehicles (CAVs) within the traffic 
stream as control actuators to manage traffic

- CAVs as traffic stream regulator
• Wu et al. (2018), Stern et al. (2018) and Jin et al. (2018) 

• “Flow control will be possible via a few mobile actuators (less than 5%)” (Stern et 
al., 2018)



Leveraging Relinquished Human Agency in Travel

• Human agency is the capacity for individuals to act independently and 
make their own decisions based on personal volition. 

• This concept is highly relevant to travel, encompassing multiple facets 
such as the timing of travel, choice of destination, mode, and route, 
driving tasks, and adaptability. 

• While traditionally personal vehicles have been marketed with cultural 
symbols of security, freedom, and control, the advent of driving 
automation requires travelers to increasingly surrender aspects of their 
agency. 
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Leveraging Relinquished Human Agency
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CAVs as Traffic Demand Distributors 

- The working hypothesis is that, by controlling the departure time or route 
choice of a small number of CAVs, we can influence a larger number of 
uncontrolled vehicles’ travel decisions to improve the overall system 
performance.
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What percentage of traffic do we need to control?

Let’s examine the minimum percentage of traffic that needs to be controlled to 

replicate system optimum in a traffic network  
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* Wardrop J. (1952) Some Theoretical Aspects of Road Traffic Research. Proceedings, Institution of Civil Engineers II(1), pp. 325-378.

JOHN WARDROP
(1922–1989)

Wardrop's Principles of Traffic Assignment*

Feature First Principle 
(User Equilibrium)

Second Principle 
(System Optimum)

Behavior Type Selfish (user optimal) Altruistic or centrally
controlled 

Stability Nash Equilibrium Requires control to be stable

Realism More realistic for 
decentralized systems

Ideal goal for planning or 
control

Total System Cost Higher than or equal to SO Minimal possible total travel 
time

Formulation 



Controlling CAVs to Replicate System Optimum

- What is the minimum percentage of traffic that needs to be controlled? 
• Cooperative AVs (CAVs): System optimum routing principle

• Uncontrolled Vehicles (UVs): User optimal routing principle
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Minimum Control Ratio (MCR) Formulation 

min
𝒇𝑼,𝒇𝑪,𝒅𝑼,𝒅𝑪,𝒗𝑼,𝒗𝑪



𝑤∈𝑊

𝑑𝑤
𝐶

s.t.

𝑣𝑎
𝑈 =  

𝑤∈𝑊



𝑟∈ 𝑅𝑤

𝑓𝑟
𝑈𝛿𝑎,𝑟

∀𝑎 ∈ 𝐴 (1)



𝑟∈ 𝑅𝑤

𝑓𝑟
𝑈 = 𝑑𝑤

𝑈
∀𝑤 ∈ 𝑊 (2)

𝑓𝑟
𝑈 ≥ 0 ∀𝑟 ∈ 𝑅𝑤, 𝑤 ∈ 𝑊 (3)

𝑣𝑎
𝐶 = 

𝑤∈𝑊



𝑟∈ ത𝑅𝑤

𝑓𝑟
𝐶𝛿𝑎,𝑟 ∀𝑎 ∈ 𝐴 (4)



𝑟∈ ത𝑅𝑤

𝑓𝑟
𝐶 = 𝑑𝑤

𝐶
∀𝑤 ∈ 𝑊 (5)

𝑓𝑟
𝐶 ≥ 0 ∀𝑟 ∈ ത𝑅𝑤, 𝑤 ∈ 𝑊 (6)

𝑣𝑎
𝑈 + 𝑣𝑎

𝐶 = ҧ𝑣𝑎 ∀𝑎 ∈ 𝐴 (7)

𝑑𝑤
𝑈 + 𝑑𝑤

𝐶 = ҧ𝑑𝑤 ∀𝑤 ∈ 𝑊 (8)

Set of paths with minimum travel time

Set of paths with minimum marginal travel time 



MCR in Real-World Networks* 

6/21/2025 Yafeng Yin 11

Network Zones Nodes Links MCR (%)

Anaheim 38 416 914 21

Barcelona 110 1020 2522 36

Berlin-Mitte-Prenzlauer Berg-
Friedrichshain-Center 98 975 2184

14

Eastern-Massachusetts 74 74 258 20

Sioux Falls 24 24 76 14

Terrassa 55 1609 3264 57

Winnipeg 147 1052 2836 42

*Chen, Z., Lin, X, Yin, Y. and Li, M. (2020) Path controlling of automated vehicles for system optimum on transportation networks with 

heterogeneous traffic stream. Transportation Research Part C: Emerging Technologies, 110, 312-329. 



Recruiting CAVs for Participation                                         
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- Drivers delegating control to machines does not necessarily mean they are 
willing to sacrifice personal benefits for system-level improvements.

- Incentives may be necessary to encourage CAV participation in traffic control 
schemes. These incentives should compensate drivers for their loss of agency 
and potential increases in travel costs.

- So, how can we design effective incentive 
schemes to recruit CAVs for implementing 
participatory traffic control?



Recruiting CAVs for Participation                                         



Morning Commute Setting (Vickrey, 1969) 
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WILLIAM 
VICKREY
(1914-1996;
Nobel Laureate, 
1996 )

Work starting time (9:30)

N persons Capacity = s

 

Early/Late Arrival Penalty

Arrival Time30:9* =t

𝐶(𝑡) = ቊ
𝛼𝑇(𝑡) + 𝛽 𝑡∗ − 𝑡 − 𝑇(𝑡) 𝑡 + 𝑇(𝑡) ≤ 𝑡∗

𝛼𝑇(𝑡) + 𝛾 𝑡 + 𝑇(𝑡) − 𝑡∗ 𝑡 + 𝑇(𝑡) ≥ 𝑡∗

𝑇(𝑡) =
𝑄(𝑡)

𝑠

𝛾 > 𝛼 > 𝛽



Equilibrium Departure Time Choice 
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Travel Cost

Arrival Time
*tst

𝑪∗ =
𝜷𝜸

𝜷 + 𝜸

𝑵

𝒔
= 𝜹

𝑵

𝒔

et

st
*t et

# of vehicles 

Timent

 s




−
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+

Queueing Diagram at Bottleneck 

Cumulative arrivals at bottleneck 

Cumulative departures at bottleneck 

𝜹
𝑵𝟐

𝒔
Total travel cost =

𝑇(𝑡)

𝑄(𝑡)



Equilibrium vs Optimum 

Optimum Equilibrium



Recruiting CAVs for Participatory Traffic Control

Group 1: Providing incentive 𝑝 in exchange for 
both departure time and maneuver control 

• 𝑥𝑁 recruited users

• Heterogeneous cost of agency 𝑐𝑑 ∈ 𝑑, 𝐷
with PDF 𝑓(𝑐𝑑), CDF 𝐹 𝑐𝑑 , and inverse 
CDF 𝐹−1 
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Group 2: Providing incentive 𝑞 in exchange 
for driving maneuvers only

• 𝑦𝑁 recruited users

• Cost of agency 𝑐𝑚 = 𝜌𝑐𝑑 with 𝜌 < 1 

Participatory Traffic Control 
• Departure time: placing Group 1 at the shoulders of the departure window
• Maneuver: uniformly mixing Group 2 in the traffic stream with UVs
• The bottleneck capacity 𝑠(𝑤) is an increasing function of the mixing rate of CAVs 𝑤 due to 

the smoothing effect. Denote 𝑠 0 = 𝑠𝑚 < 𝑠 1 = 𝑠𝑀 = 𝑟𝑠𝑚, 𝑟(> 1) is the maximum 
capacity improvement ratio 



Equilibrium Solutions under Control  
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Cumulative 
departures/ 
arrivals

Time

𝑡𝑠
𝑅

Time

Travel cost

𝑠 𝑤

𝑠𝑀

𝑠𝑀

𝑡𝑒
𝑅

𝑡𝑠
𝐴 𝑡𝑒

𝐴

𝐶𝐸

𝐶𝑀

𝑥𝑁 Group 1 CAVs

𝑦𝑁 Group 2 CAVs 

𝐶𝑀 = 𝛿
𝑁(1 − 𝑥)

𝑠 𝑤
𝐶𝐸 = 𝛿𝑁

1 − 𝑥

𝑠 𝑤
+

𝑥

2𝑠𝑀

Average travel cost of 

Group 1 recruits 

Equilibrium travel cost of 

remaining commuters  



First-Best Design 
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min
𝑥,𝑦

𝛿𝑁2
1 − 𝑥

𝑠
𝑦

1 − 𝑥

+
𝑥2

2𝑠𝑀
+ 𝜃𝑁 න

𝑑

𝐹−1 𝑥
𝜃

𝑐𝑓 𝑐 𝑑𝑐 + 𝜌𝜃𝑁 න
𝐹−1 𝑥

𝜃

𝐹−1 𝑥+𝑦
𝜃

𝑐𝑓 𝑐 𝑑𝑐 + 𝜅 𝑥 + 𝑦 𝑁

𝑠. 𝑡.  𝑥 + 𝑦 ≤ 𝜃, 𝑥, 𝑦 ≥ 0

Total travel cost Total cost of agency

Specification of 𝑠(𝑤) and 𝐹:

• The smoothing effect is marginal increasing

𝑠 𝑤 =
𝑠𝑀

− 𝑟 − 1 𝑤 + 𝑟

• Uniformly distributed 𝑐𝑑

Capacity 𝑠

Control rate 𝑤

0, 𝑠𝑚

1, 𝑠𝑀 = 1, 𝑟𝑠𝑚

Operation cost



Analytical Solutions 

where 𝐴 =
𝜃𝛿𝑁− 1−𝜌 𝑟𝑠𝑚𝜃

𝐷𝑑

𝐷−𝑑

𝜃𝛿𝑁+ 1−𝜌 𝑟𝐷𝑠𝑚
,     𝐵 =

𝑟 1−
𝑠𝑚𝜅

𝛿𝑁
−1 𝜃𝛿𝑁

𝜌𝑟𝐷𝑠𝑚
− 𝜃

𝑑

𝐷−𝑑
,                𝐶 =

𝑟 1−
𝑠𝑚𝜅

𝛿𝑁
𝜃𝛿𝑁−𝑟𝑠𝑚𝜃

𝐷𝑑

𝐷−𝑑

𝜃𝛿𝑁+𝑟𝐷𝑠𝑚
 

𝑐𝑙𝑎𝑚𝑝 0,𝜃 𝑋 = min max 0, 𝑋 , 𝜃 .

Optimal incentives: 

𝑝∗ =
𝐷 − 𝑑

𝜃
+

𝛿𝑁

2𝑟𝑠𝑚
𝑥∗ +

𝜌(𝐷 − 𝑑)

𝜃
𝑦∗ + 𝑑 𝑞∗ =

𝜌 𝐷 − 𝑑

𝜃
𝑥∗ + 𝑦∗ + 𝜌𝑑
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Conditions 𝒙∗ 𝒚∗

𝐵 < 0 𝑐𝑙𝑎𝑚𝑝 0,𝜃 (𝐶) 0

𝐵 ∈ 0, 𝜃
𝐵 < 𝐴 𝑐𝑙𝑎𝑚𝑝 0,𝜃 (𝐶) 0

𝐵 ≥ 𝐴 𝑐𝑙𝑎𝑚𝑝 0,𝜃 (𝐴) 𝐵 − 𝑐𝑙𝑎𝑚𝑝 0,𝜃 (𝐴)

𝐵 ≥ 𝜃 𝑐𝑙𝑎𝑚𝑝 0,𝜃 (𝐴) 𝜃 − 𝑐𝑙𝑎𝑚𝑝 0,𝜃 (𝐴)

Unconstrained recruitment target for Group 1 Unconstrained total recruitment target Adjusted recruitment target for Group 1 

with Group 2 not being activated 



Managerial Insights – Economic Feasibility 

• The incentive scheme is always active if there exist drivers whose cost of 
agency is sufficiently small (e.g., the lower bound of the cost  𝑑 = 0) and 
the unit operation cost is sufficiently low compared to the equilibrium 

travel cost (𝜅 ≪ 𝛿
𝑁

𝑠𝑚
)

- No recruitment arises when 𝐵 < 0, 𝐶 < 0. Since 𝑟 > 1, these inequalities cannot hold 
simultaneously if both conditions are met 

• Empirical studies indicate that more than 60% of people are willing to take 
prosocial actions when there is no personal cost. This suggests a high 
likelihood of the existence of drivers with sufficiently low or zero agency 
costs.

• Recruiting CAVs for participatory traffic control likely makes economic 
sense for rush hour congestion management.…
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Managerial Insights – Economic Feasibility 

• …. especially in large cities!
- The number of recruits increases as N increases 

- In high-demand scenarios, travel cost dominates, and participatory 
control offers greater leverage to reduce the total cost
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min
𝑥,𝑦

𝛿𝑁2
1 − 𝑥

𝑠
𝑦

1 − 𝑥

+
𝑥2

2𝑠𝑀
+ 𝜃𝑁 න

𝑑

𝐹−1 𝑥
𝜃

𝑐𝑓 𝑐 𝑑𝑐 + 𝜌𝜃𝑁 න
𝐹−1 𝑥

𝜃

𝐹−1 𝑥+𝑦
𝜃

𝑐𝑓 𝑐 𝑑𝑐 + 𝜅 𝑥 + 𝑦 𝑁

𝐵 =
𝑟 1 −

𝑠𝑚𝜅
𝛿𝑁

− 1 𝜃𝛿𝑁

𝜌𝑟𝐷𝑠𝑚
− 𝜃

𝑑

𝐷 − 𝑑

Total travel cost Total cost of agency Operation cost



Managerial Insights – Hiring Strategy

• We should generally prioritize recruiting Group 1, even though they 
are more costly to hire.

- This preference is driven by their marginally increasing smoothing 
effect and the presence of drivers with low agency costs. 

- When 𝑑 = 0, we always have Group 1 recruits. Positioning them at 
the shoulders, where the mixing rate is 100%, yields the greatest 
benefits.
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Managerial Insights – Hiring Strategy

• The recruitment focus shifts toward Group 2 as the smoothing effect 
becomes stronger
- A higher 𝑟 leads to more recruits

- On the other hand, a higher 𝑟 leads to fewer recruits in Group 1, implying that the 
share of Group 1 in the recruits drops

- When 𝑟 increases, recruiting Group 2 becomes more cost-effective, as they are less 
costly but become more effective
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𝐵 =
𝑟 1 −

𝑠𝑚𝜅
𝛿𝑁

− 1 𝜃𝛿𝑁

𝜌𝑟𝐷𝑠𝑚
− 𝜃

𝑑

𝐷 − 𝑑

𝐴 =
𝜃𝛿𝑁 − 1 − 𝜌 𝑟𝑠𝑚𝜃

𝐷𝑑
𝐷 − 𝑑

𝜃𝛿𝑁 + 1 − 𝜌 𝑟𝐷𝑠𝑚



Numerical Validation 
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Scenarios 
Smoothing effect

Marginal 
increasing 

Linear Marginal 
decreasing 

Cost of 
agency

Uniform (a) (b) (c)

Truncated normal (d) (e) (f)

At 𝑑 = 0, 𝜌 = 0.9 and 10% 
AV market penetration, the 
recruitment level stays 
above 2% across all cases 
when varying 𝐷 and 𝑟



Second-Best Solution 
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At 𝑑 = 2, 𝐷 = 10, 𝜌 = 0.3, 
𝑟 = 1.6, and 30% AV 
market penetration, both 
groups see higher 
recruitment and incentives 
as the budget increases

Scenarios 
Smoothing effect

Marginal 
increasing 

Linear Marginal 
decreasing 

Cost of 
agency

Uniform (a) (b) (c)

Truncated normal (d) (e) (f)



Controlling CAVs for Network Efficiency 
                                        



Problem Setting 

- We consider a general network where the routes or/and departure times of a 
fraction of CAVs can be controlled to reduce cumulative system travel cost 
over time.
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MIKE SMITH
(2007 INFORMS
Robert Herman 
Lifetime 
Achievement 
Awardee)

- Uncontrolled vehicles (UVs) behave selfishly, adjusting 
their choices day-to-day following a certain dynamics 
like the one proposed by Smith (1984), though this 
process is not necessarily known to the traffic 
authority. 

- We thus aim for a model-free, 
distributed control policy that lets CAVs 
act based on local information.



Finite-Agent Optimal Control Problem
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min
𝜋

𝐽 𝜋 = 𝐸 

𝑡=0

∞

𝛾𝑡𝐶 𝜇𝑡
𝑁 , 𝜈𝑡

𝑀

𝑠. 𝑡.  𝜈𝑡+1
𝑀 = 𝑞 𝜇𝑡

𝑁 , 𝜈𝑡
𝑀

𝑎𝑡
𝑖 ~𝜋 ⋅ 𝑥𝑡

𝑖 , 𝜇𝑡
𝑁 , 𝜈𝑡

𝑀) 𝑖 ∈ 𝑁

𝑥𝑡+1
𝑖 ~𝑝 ⋅ 𝑥𝑡

𝑖 , 𝑎𝑡
𝑖 , 𝜇𝑡

𝑁 , 𝜈𝑡
𝑀) 𝑖 ∈ 𝑁

If the transition kernels 𝑝 and 𝑞, as well as the system cost 𝐶 are Lipschitz continuous 
w.r.t 𝜇 and 𝜈, there always exists an optimal policy

Proposition

Finding such a policy becomes intractable as the number of agents grows large*

*Yang, Y., R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang (2018) Mean field multi-agent reinforcement learning. Proceedings of the 35th International 

Conference on Machine Learning, PMLR 80:5571-5580.

Transition kernel for uncontrolled vehicles 

Sample action from CAV routing policy 

Transition kernel for CAVs

Total discounted cost over time



Mean-Field Approximation 

Let 𝑁, 𝑀 → ∞
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CAVs (modeled by a Markov decision process)

State 𝑥𝑡 ∈ 𝒳 (current travel choice), a realization of a 
random variable whose distribution matches the MF 
distribution 𝜇𝑡

Action 𝑎𝑡 ∈ 𝒳 (choosing next travel choice) sample 
from policy 𝜋 ⋅ |𝑥𝑡 , 𝜇𝑡 , 𝜈𝑡

Transition 𝑥𝑡+1~𝑝 ⋅ |𝑥𝑡 , 𝑎𝑡 , 𝜇𝑡 , 𝜈𝑡

Uncontrolled vehicles (UV) (modeled by a Markov 
process)

State: the empirical distribution 𝜈𝑡
𝑁 → 𝜈𝑡 ∈ 𝒫(𝒳), a 

mean-field travel choice distribution under the law of 
large numbers

Transition 𝜈𝑡+1~𝑞 ⋅ |𝜈𝑡 , 𝜇𝑡

• 𝜇𝑡 , 𝜈𝑡  as the state   (population state)  population cost 𝑐 𝜇𝑡 , 𝜈𝑡     (system travel cost)

• Let 𝜋𝑡 𝜇𝑡 , 𝑣𝑡 = 𝜋𝑡 ⋅ | ⋅, 𝜇𝑡 , 𝜈𝑡 , and represent the state-action joint distribution across the CAVs as the 
population action ℎ𝑡 = 𝜇𝑡 ⊗ 𝜋𝑡 𝜇𝑡 , 𝑣𝑡  (CAV assignments)

• The action is sampled from a new policy ℎ𝑡~ ො𝜋 𝜇𝑡 , 𝜈𝑡

• Transition 𝜇𝑡+1 = 𝑇 𝜈𝑡 , 𝜇𝑡 , ℎ𝑡 , 𝜈𝑡+1~𝑞 𝜈𝑡 , ℎ𝑡 (population response)

        where 𝑇 𝜈𝑡 , 𝜇𝑡 , 𝜇𝑡 = σ𝑥 σ𝑎 𝑝 ⋅ 𝑥, 𝑎, 𝜇𝑡 , 𝜈𝑡) 𝜋𝑡 𝑎 𝑥, 𝜇𝑡 , 𝜈𝑡 𝜇𝑡 𝑥



Mean-Field Approximation 
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Finite Agent Control Mean-Field Control

State Current route choice of each CAV
Route choice distribution of UVs

Current route choice distributions 
of two groups (representative 

agents)

Action Assigned route choice of each CAV Joint distribution of current and 
assigned route choices for all CAVs 

(population action)

Transition Each CAV follows assignment
UVs follow day-to-day dynamics 

CAVs follow a population kernel
 UVs follow day-to-day dynamics 

Cost Total cost of all vehicles Total cost of all vehicles 



min
ෝ𝜋

𝐽 ො𝜋 = 𝐸 

𝑡=0

∞

𝛾𝑡𝑐 𝜇𝑡 , 𝜈𝑡

𝑠. 𝑡.  𝜈𝑡+1 = 𝑞 𝜇𝑡 , 𝜈𝑡

ℎ𝑡~ ො𝜋 ⋅ 𝜇𝑡 , 𝜈𝑡)

𝜇𝑡+1~𝑇 ⋅ 𝜇𝑡 , 𝜈𝑡 , ℎ𝑡)

If the transition kernels 𝑝 and 𝑞, as well as the system cost 𝑐 are Lipschitz continuous 
w.r.t 𝜇 and 𝜈, there always exists an optimal policy for MFC

Proposition*
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Single-Agent Mean-Field Control

*Cui, K., C. Fabian, Tahir, A., and H. Koeppl (2024) Major-Minor Mean Field Multi-Agent Reinforcement Learning, Proceedings of the 41st International 

Conference on Machine Learning, PMLR 235:9603-9632.

Transition kernel for uncontrolled vehicles 

Sample action from the population policy 

Transition kernel for CAVs



Input: Initialize population policy ෝ𝝅𝝎

for iterations 𝑡 = 1,2, … do

Sample population action ℎ𝑡~ ො𝜋𝜔 ⋅ 𝜇𝑡 , 𝜈𝑡

Broadcast ℎ𝑡

for CAV agent 𝑖 = 1,2, … , 𝑁 do

Retrieve individual policy 𝜋𝑡  from ℎ𝑡

Sample and execute action 𝑎𝑡
𝑖 ~𝜋𝑡 ⋅ 𝑥𝑡

𝑖

end for

Observe cost 𝐶𝑡, next population state 𝜇𝑡+1, 𝜈𝑡+1

Update policy ො𝜋𝜔  (with RL algorithms) 

end for
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RL-Based Distributed Policy *  

*Wu, M., Wang, M., Yin, Y. and Lynch, J. (2024) Leveraging connected and automated vehicles for participatory traffic control. Transportation Research Part 

C, Vol. 166, 104757.  



Distributed departure-time policy with Vickrey’s bottleneck setting

Numerical Experiments

Yafeng Yin 35



Numerical Experiments (Cont’d)

Implementation of the resulting policy: 100% controllable,  random initialization, 
average of three trials 

6/21/2025 Yafeng Yin 36



Concluding Remarks 



Key Takeaways 

- Advancements in connectivity and automation will make travelers more 
willing to give up personal control over their travel choices.

- CAVs with relinquished agency can serve as “traffic demand distributors,” 
coordinating routes and departure times to enhance system performance.

- Controlling ~15–20% of traffic can be effective, but required share varies by 
context.

- Incentives help recruit CAVs by compensating drivers for their reduced control 
and any added travel costs.

- Implementing such schemes is likely economically sensible for managing rush 
hour congestion in large cities.

- Mean-field reinforcement learning effectively trains distributed control 
policies.

- Participatory traffic control could be a promising addition to our 
congestion management toolbox.

6/21/2025 Yafeng Yin 38



Synergistic Integration with Other Instruments*

For example, participatory traffic control, when integrated with path-based pricing, can 
create synergies that offset each method’s weaknesses.
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Network Zones Nodes Links MCR (%)
Zero –

Revenue 
MCR (%) 

Anaheim 38 416 914 21 0.73
Barcelona 110 1020 2522 36 0.32
Berlin-Mitte-Prenzlauer Berg-Friedrichshain-
Center 98 975 2184

14 0.06

Eastern-Massachusetts 74 74 258 20 0.48
Sioux Falls 24 24 76 14 0.70
Terrassa 55 1609 3264 57 23
Winnipeg 147 1052 2836 42 0.6

*Chen, Z., Lin, X, Yin, Y. and Li, M. (2020) Path controlling of automated vehicles for system optimum on transportation networks with heterogeneous traffic 

stream. Transportation Research Part C: Emerging Technologies, 110, 312-329. 



Controlling CAVs to Stabilize System Dynamics*
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Leveraging 𝜹-dissipativity for stabilizing discrete-time mixed-traffic dynamic systems

Dissipation Inequality
𝑆 𝑥𝑘+1, 𝑝𝑘 ≤ 𝜎 𝑥𝑘+1, 𝑝𝑘 + 𝑠(𝛿𝑥𝑘 , 𝛿𝑝𝑘)

Fl
ow

s

Time

Payoff Dynamics (PDM)

Flows
𝛿𝑥𝑘

Payoff
𝛿𝑝𝑘

Evolutionary Dynamics (EDM)

Payoff Dynamics (PDM)

Propose 
novel 

backward 
EDM 

𝜈 𝑥𝑘+1, 𝑝𝑘

Prove EDM 
dissipativity 

by finding 
𝑆 𝑥𝑘+1, 𝑝𝑘 , 
𝑠(𝛿𝑥𝑘, 𝛿𝑝𝑘)

Design controller / 
payoff mechanism 

𝛿𝑝𝑘 to enforce 
s 𝛿𝑥𝑘, 𝛿𝑝𝑘 ≤ 0

CAV Control

Fl
ow

s

Time

* Lee, R., Scruggs, J., and Yin, Y. (2025) Discrete-Time Stabilization of Nash Equilibrium for Mixed Traffic Routing. 2025 American Control Conference, July 8-10, 2025, Denver, CO, USA
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Numerical Experiments (Cont’d)
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Sioux Falls Network

Distributed routing policy:
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