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1 Introduction

This paper presents a novel adaptive control framework with flexible train composition for routing
and scheduling in network-wide rail transit services. This framework aims to minimize passenger
waiting times and operating costs driven by stochastic travel demand. The control problem is for-
mulated as a Markov decision process (MDP) to reflect the practicality in real-world applications.
To address the computational challenges associated with the control problem, deep reinforcement
learning techniques are applied to seek potential optimal solutions to the optimization problem.
The proposed control framework is tested using real-world scenarios and the data collected from
the Hong Kong Light Rail Transit (LRT) network. The experiment results demonstrate that the
proposed routing and scheduling control framework using flexible train composition can effec-
tively reduce passenger waiting time and operating costs. This study contributes to the real-time
routing and scheduling of network-wide rail transit services by integrating advanced optimization
technology.

2 Methodology

Figure 1 – An example of service runs of the transit network.
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We consider a rail transit network consisting of a set of routes denoted as Π. Each specific
route π ∈ Π consists of an ordered set of stations Iπ = {1π, 2π, ..., ıπ, ..., (ı+ ȷ)π, ..., (I− 1)π, Iπ}.
Here {ıπ, ..., (ı + ȷ)π} denotes the stations exclusive to a single route (i.e. non-shared stations),
while {1π, 2π, ..., (I − 1)π, Iπ} denotes the stations utilized by multiple routes (i.e. shared sta-
tions). Figure 1 provides a basic example of a transit network. In this network, a service run on
route π will depart from depot 0π, follow the ordered set of stations Iπ on route π towards the
terminal station Iπ, and then return to depot 0π. To provide high-quality services to passengers
in crowded transit networks, this study focuses on determining the dispatching headway and dis-
patching route for each service run. Instead of fixed fleet sizes, each service run departing from
the depot consists of one driving module and a variable number of trailers. The advantage of this
flexible fleet size strategy is that it enhances passenger satisfaction and helps mitigate congestion.
Consequently, the optimization problem involves determining the dispatching headway, dispatch-
ing route, and assigned fleet size for each service run, ensuring a real-time response to dynamic
variations in passenger demand. Furthermore, the objectives of this study are to minimize both
the total passenger waiting time and the operating cost of the rail transit network.

Given the specific configuration of the transit network, the optimal control system for routing
and scheduling service runs can be formulated as a Markov decision process (MDP) (Bertsekas,
2019). To accurately capture passenger boarding and alighting details, the state needs to encom-
pass not only the dispatching information of the current service run but also those of previous
service runs and historical passenger demand information (with dimensions increasing over time
t). Consequently, the state space becomes huge and varying, posing a significant challenge when
applying reinforcement learning in real-world scenarios. In such cases, a partially observable
Markov decision process (POMDP) (Powell, 2007) is considered in our study. In a POMDP,
the controller no longer knows directly the system state. Instead, the controller receives an
observation generated from the underlying system state and makes the decision based on the
observation. In this study, the observation set on be defined as the number of remaining pas-
sengers ln−1

K,iπ
at each station after the last train service has passed, as well as the last departure

time σ̂n−1
K,iπ

at each station at stage n − 1. Associate with the observation, the decision vector
xn = (πn, un, hn) contains the chosen dispatching route πn of service run n, the assigned train
composition un of service run n, and the headway between service run n− 1 and n. At decision
stage n, the Markovian system is in a specific state sn. The service run n associated with the
decision xn is dispatched based on the given observation on. Subsequently, the system received
next observation on+1 according to the transition function sn+1 ∼ P (sn,xn) and receives a
reward rn from the reward function rn ∼ R(sn,xn). The terminal condition of the dynamic
system is specified by a binary variable ηn, where ηn = 1 if all passenger demand in the transit
network has been served at stage n, and ηn = 0 if otherwise.

To overcome the computational challenge of the optimal control problem, we adopt a multi-
layer artificial neural network (ANN) surrogate, denoted as Qϕ, defined by a parameter set
ϕ. The ANN surrogate comprises an input layer, an output layer, a long short-term memory
(LSTM) layer (Hochreiter & Schmidhuber, 1997), and two fully connected layers with element-
wise non-linear activation function (e.g. hyperbolic tangent (Tanh) and rectified linear unit
(ReLU) function). Incorporating an LSTM layer in the framework allows for integrating a
long history of observations, enabling more accurate estimation of the Q-value (Hausknecht &
Stone, 2015). Compared to linear kernel regression models, ANN surrogates can capture more
sophisticated system dynamics. Before the proposed control framework can achieve satisfactory
performance, it is necessary to train the parameters θ of the ANN surrogate. This study uses
a deep recurrent Q network (DRQN) training algorithm (Hausknecht & Stone, 2015) due to its
computational efficiency and stability in partial observation environments.
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3 Results and discussion

The proposed optimization framework is tested on three routes of the Hong Kong Light Rail
Transit (LRT) network, as shown in Figure 2a, and Figure 2b shows the average passenger
demand rate over time. A total of Û = 50 train units are available for dispatching, and each
train unit can carry up to Cap = 200 passengers.

(a) routes in the test network (b) Passenger demand in the test network

Figure 2 – Existing configuration of the test network.

According to the MTR operational guidelines, the safety separation between successive train
services ∆S and the shunting time ∆T are both set to 60s and the nominal dwell time wi at each
station is set to 30s. There are five admissible levels of dispatching headways, which are 2, 4,
6, 8, and 10 minutes, with corresponding hmin = 2 and hmax = 10. Furthermore, the minimum
headway Hmin and maximum headway Hmax for each route are set to 2 minutes and 30 minutes,
respectively. Considering vehicle characteristics, each service run is restricted to a maximum of
two train units (i.e. umax = 2).

Figure 3 first presents the dispatching headways and train unit deployment for each route at
the lowest achieved total cost. In the figure, the ’point’ and ’square’ markers represent dispatches
of ’single-car’ and ’double-car’ trains, respectively. The figure also includes the average passenger
demand profile corresponding to each route as a reference. Specifically, in Figure 3, it can be
observed that the controller dispatches more train units with shorter headways between 6:00
and 8:00 to cater to the potential peak passenger demand between 7:00 and 9:00. Figure 3
also shows the controller maintains relatively stable dispatching headways during the periods
of 5:00 to 6:00 and 8:00 to 9:00 to meet the passenger demand during the off-peak period (i.e.,
before 7:00 and after 9:00). After 9:00, taking advantage of the remaining service resources in
the transit network, the controller dispatches service runs with longer headways. This strategy
helps minimize operating costs without significantly decreasing passenger satisfaction, showing
the adaptiveness of the control framework to the prevailing passenger demand.

For benchmarking purposes, we compare the proposed DRQN algorithm with the well-
established GA (genetic algorithm) and PSO (particle swarm optimization). Table 1 shows
the detailed performance. It is observed that the reinforcement learning algorithms outperform
GA and PSO in total cost. That can be attributed to the approximation of the state space based
on the ANN surrogate, which is specifically tailored to the original service scheduling problem.
As a result, specialized optimization techniques such as the ADAM algorithm can be employed
for the training process instead of relying on less efficient meta-heuristic algorithms like GA.
Table 1 also shows the performance of two benchmark control settings to test the effectiveness of
the proposed flexible routing and train composition strategy. The first benchmark control setting
is ’fixed train’, where a flexible routing strategy is allowed, but only fixed train compositions are
considered. In this setting, double-car trains are used for all service runs on the lines. The sec-
ond benchmark control setting is ’fixed routing’, where flexible train composition is allowed, but
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(a) Route 614 (b) Route 615

Figure 3 – Dispatching headways and train units deployment with respect to passenger demand
profile.

service runs are dispatched in a fixed sequence (e.g., ...-615-614-615-614-...) until all passengers
have been served.

Table 1 – Performances of different models.

Model Total
cost ($)

Passenger
cost ($)

Operating
cost ($)

Number of
services

Average
train units

Base-DRQN 1175901 389412 786489 76 1.15
Base-GA 1326712 428421 898291 83 1.18
Base-PSO 1304314 411197 893117 82 1.20
Fixed train-DRQN 1409256 510618 898637 53 2.00
Fixed routing-DRQN 1239171 431931 807240 77 1.21

From the result of Table 1, we can also observe the proposed model (denoted as the ’base
model’ in the table) delivers the lowest costs. Specifically, compared to the ’fixed train’ model and
the ’fixed routing’ model, the base model achieves a reduction in total cost, with a 19.8% and 5.4%
reduction, respectively. This reduction can be attributed to the flexibility of the base model in
train composition and routing based on passenger demand in the transit network. Furthermore,
the base model shows a 10.9% reduction in passenger costs compared to the ’fixed routing’
model, despite the latter dispatching more service runs with higher average train units. This
reduction in passenger costs can be attributed to the base model’s flexible routing, which allows
for increased service runs on highly demanded service lines during peak hours. Additionally, it can
be observed that both the base model and the ’fixed routing’ model dispatch fewer trains to reduce
operating costs. Consequently, although the ’fixed train’ model dispatches fewer service runs, its
operating costs remain significantly higher than the other two models. These findings suggest
the importance of having flexible train composition and routing for optimizing the operations of
a transit network throughout different times of the day.
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