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1 Introduction

Operating demand-responsive transport (DRT) requires solving the vehicle routing problem (VRP), a
combinatorial problem whose complexity grows quickly with the number of passengers. Solving large
instances (e.g., more than 100 passengers) is time-consuming, even using advanced meta-heuristics. This
is an obstacle to using mathematical and computational frameworks to optimally design DRT systems.
Continuous approximations (CAs) are an attractive alternative for addressing these issues, as they pro-
vide analytical functions that can be computed efficiently, enabling fast analysis and optimization. Many
mathematical models have been developed to describe the aggregate characteristics and key performance
indicators (KPIs) of DRT systems, which can broadly be categorized into two approaches:
Analytical Models from ‘First Principles’ derive formulae for KPIs using geometric probability
and queuing theory, without using data for estimation. Considering random customer locations in a
compact operational area, two key works are (i) Beardwood et al. (1959) who developed an asymptotic
formula for the optimal tour length of the travelling salesman problem (TSP), and (ii) Daganzo (1978)
who derived models for DRT average cycle time (closely related to average tour length) based on fleet
size, demand rate, and system configuration. More recent works have applied similar principles to in-
creasingly elaborate DRT instances.
Empirical Models Estimated Using Data propose analytic formulae to approximate DRT system
outputs as continuous functions of key input variables (e.g., number of passengers, operating area).
Model parameters are then estimated using simulated or real-world data. Fu (2003) proposed an analyt-
ical model for fleet size, which was calibrated using simulation data. Whereas Quadrifoglio & Li (2009)
modelled the optimal cycle time of DRT as a feeder service in a rectangular strip, a model since applied
to hybrid fixed/DRT systems in Calabrò et al. (2023). Chandra & Quadrifoglio (2013) explore alter-
native models for optimal cycle time, demonstrating that different models perform better for different
operating area geometries based on simulation results. Marković et al. (2016) applied generalized linear
models (GLM) and support vector regression (SVR) to model fleet size, total vehicle travel time and
total vehicle KMs as functions of 11 input variables.

Contribution. This paper adopts the empirical modelling approach to derive a CA model for the
total vehicle KMs of a demand responsive feeder service (DRFS) with meeting points (MPs). Meeting-
point-based approaches are receiving increasing interest as a means of improving the efficiency of DRT
provision. However, MPs introduce additional complexity since the number of pick-up locations is no
longer equal to the number of passengers - it depends on the density of passengers and their acceptable
walking distance. Distinctively, our model encompasses these critical factors to represent an MP-based
service. In addition, whereas most CA models consider only aggregate or averaged quantities, we guar-
antee level of service at the individual level via a detour factor constraint. We propose a functional form
for this CA model and fit it to data from a full DRFS simulation, covering a wide range of scenarios. We
show that the resulting CA accurately captures the key characteristics of the system, offering a practical
tool for optimizing meeting-point-based DRFS systems.
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2 Methodology

We consider a demand-responsive feeder service (DRFS) serving a circular operating area. Passengers
(Pax) are picked up from meeting points (MPs) and transported to a transit station at the centre. The
operating area, radius R and area A = πR2, is covered by a regular grid of potential MPs. Each day N
customer requests are generated, uniformly randomly distributed throughout the operating area. The
operator assigns each customer to a meeting point (MP) for pick-up, within their maximum walking
distance, W . The grid spacing is set as

√
2W to ensure passengers can reach at least one MP.

Vehicles start from the origin and travel at constant speed along straight lines between visited loca-
tions. Vehicles have unlimited range and passenger capacity. Passengers’ in-vehicle time is controlled
by imposing a constraint on the maximum detour factor, D, experienced by each individual: individual
total in-vehicle time can be no more than D times the direct travel time from their pick-up MP to the
destination.

A single scenario is defined by [N,R,W,D]. Figure 1 shows radius R = 15km, within which N = 25
passengers (red dots) have been generated at random locations. The central station (green square),
regular grid of potential MPs (tiny grey +) and active MPs (23 grey squares) are illustrated. Three
solutions are shown, corresponding to different values of D. Passengers submit their ride requests in

(a) D = 2.5 gives 5 tours (b) D = 1.0 direct taxi (c) D = ∞ TSP tour

Figure 1 – DRFS scenario [N,R,W,D] = [25, 15, 1, D] and optimal solutions

advance and there is no scheduling: all passengers have the same desired arrival time. The operator
communicates the MP and pick-up time. No requests are rejected. Passengers are not generated within
walking distance of the transit station. Given a set of customer requests, we compute the vehicle tours
that minimize the DRFS objective function

Z = V TT + PWT (1)

the sum of total vehicle travel time (VTT) and passengers’ total walking time (PWT). The first term
minimises operator costs, the second ensures passengers are assigned to convenient MPs. Details of the
problem formulation can be found in Ma et al. (2024), along with the metaheuristic algorithm we use
to solve this problem. From the algorithm outputs, we focus on total vehicle KMs travelled, V , and
number of active MPs, M .

The detour factor constraint forces multiple vehicle tours. For the scenario above the optimal DRFS
solution with D = 2.5 is shown in Figure (1a): 23 active MPs are covered by 5 vehicle tours. In the
extreme case D = 1, every passenger must be taken directly from pick-up MP to the destination with no
detour. The result is a "direct taxi service" as shown in Figure (1b). Note that multiple passengers may
be assigned to the same MP, and hence the number of tours is the number of active MPs, not the number
of passengers. The total vehicle KMs in this case will grow linearly with the radius and number of MPs
visited V taxi ≃ RM . At the other extreme, if the detour constraint is completely relaxed (D → ∞)
then any detour will be accepted. The objective function (1) is then minimized by the single tour of the
travelling salesman problem (TSP) solution visiting the active MPs; see Figure (1c). When visiting M
randomly uniformly distributed locations V TSP grows as V TSP ≃ RM0.5.

Model for V: The DRFS solution depends on all scenario inputs [N,R,W,D]. However, V depends
directly on the number of stops, M , and on R and D. Whereas the walking distance, W , affects
the assignment of passengers to MPs, not the subsequent vehicle routing. We therefore seek a nested
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model V = V (M,R,D) with M = M(N,R,W ) since the detour factor will not directly impact on MP
assignment. The above limiting cases prompt a model with the following structure:

V (M,R,D) = a1RM0.5

(
1 + a2

Ma3

Da3

)
. (2)

Note that in the limit D → ∞ only the leading term remains, matching the TSP formula V ≃ RM0.5.
In addition, if we set a3 = 0.5 and consider large M with D = 1, we get V ≃ RM which would match
V taxi. The coefficients will be fitted to data described below.

Model for M: The number of active MPs, M , is an output of the DRFS solution. The operator
assigns passengers to MPs up to distance W away. We refer to the walkable area centred on a passenger
as a "W-disc". Each W-disc may contain several MPs if W ≫ G. Again we consider the limiting cases.
For small N , passengers are sparse and we expect each passenger will be assigned to their own MP,
M = N . This can also occur when W-discs are small. For large N , or more precisely, high density,
N/πR2, most MPs will have passengers assigned. Naively, this could mean we need M = πR2/πW 2,
the number of W-discs needed to cover the operating area; though since discs tessellate poorly this will
be an underestimate. This inspires us to model M with the following structure:

M(N,R,W ) =
N

1 + b1(
N

πR2 )b2W b3
(3)

With low density N/(πR2) ≪ 1, and/or small walking distance, W ≪ 1, the denominator will collapse
to unity and give M = N . The terms in the denominator capture the fact that (i) as W increases,
passengers walk further and hence can be assigned to fewer MPs, and (ii) as the passenger density
increases more passengers will be assigned to the same MPs. For high density, the N/(πR2) term
dominates the denominator. With the right coefficients, this model could give the W-disc coverage
formula noted above M = πR2/πW 2. However, the coefficients will be fitted below.

3 Computational Approach, Results and Discussion

Latin hypercube sampling is used to create a set of 82 scenarios for [N,R,W,D], covering wide ranges
for the input variables. See Table 1.

Passengers (N) Radius (R) Walk Max (W) Detour Factor (D)
Min 20 3 0.7 1.20
Max 500 30 2.00 9.00

Table 1 – Range of DRFS scenario variables

Demand Stochasticity: Passenger locations are uniformly randomly generated and hence there
can be multiple realizations of demand for one [N,R,W,D] scenario; each demand realization will result
in a different DRFS solution, hence different values for M and V . A continuous analytic model for V
cannot capture this stochastic variation and will give only a single value for each set of input variables
[N,R,W,D] (note the horizontal groups in Figure 2). This irreducible variability will be quantified
using the mean absolute percentage deviance (MAPD), analogous to the mean absolute percentage error
commonly used in modelling. For each of the 82 scenarios we generate 10 random demand instances
(days). On each day, N customer locations are generated from the uniform distribution and the DRFS is
solved using the meta-heuristic of Ma et al. (2024), to provide values for for M and V . Using these data,
we first fit the nonlinear model for M from (3), then with this nested inside the model for V we fit (2).
Table 2 shows the model fit statistics and coefficient estimates, with MAPD indicating the irreducible
variability which accounts for more than half of the mean absolute percentage error (MAPE) in the CA
models for M and V .

V (M,R,D) = 0.9RM0.5

(
1 + 0.57

M0.48

D0.64

)
with M(N,R,W ) =

N

1 + 1.99
(

N
πR2

)0.92
W 1.78

(4)

The M model for MPs has MAPE = 7.06, with more than half of this amount due to the irreducible
variability in MPs (MAPD = 3.79). The nested V (M) model fits well, with MAPE = 8.92; again more
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Model Coeff Estimate SE Statistic Value

M
b1 1.99 0.014 MAPD 3.79
b2 0.92 0.005 MAPE 7.06
b3 1.78 0.01 RMSE 5.14

R2 0.996

V (M)

a1 0.90 0.10 MAPD 4.68
a2 0.57 0.11 MAPE 8.92
a3 0.48 0.02 RMSE 44.0
a4 0.64 0.02 R2 0.997

VGLM

g0 4.94 0.01 MAPD 4.68
g1 0.003 1E-5 MAPE 26.36
g2 0.10 0.0002 RMSE 185.92
g3 -0.54 0.004 R2 0.926
g4 -0.22 0.002

Table 2 – CA models: coefficients, standard errors,
and goodness of fit statistics Figure 2 – Data vs CA Model for VehKMs

than half of this is accounted for by the MAPD of the data. Recall the idealised limiting behaviours
that motivated this model structure. The model for M gives the limit M = N for low passenger density
and/or W → 0. With high passenger density we get approximately M = πR2/2W 1.78. The combined
nested model for V in the limit D ≫ 1 gives the TSP-like model V = 0.9RM0.5. For D = 1 we have
V = 0.51RM0.98 which scales nearly linearly with M .

For comparison, we fitted multiple GLM models VGLM = g0 + g1N + g2R + g3W + g4D as used in
Marković et al. (2016). We considered all common distributions and link functions and all combination
of available inputs as linear terms via stepwise regression. The best of these models is reported in Table
2 which achieves only MAPE = 26.36 and RMSE = 185.92.

4 Conclusions

We have proposed an analytical structure that gives a continuous approximation model for the DRFS
with meeting points, incorporating an individual passenger-based detour factor constraint to guarantee
the level of service. We fit the model based on a set of DRFS scenarios each having 10 random demand
realizations. The proposed model outperforms (in terms of errors and applicable range of inputs) other
analytical (regression) models proposed in the literature and can readily be used for the design, config-
uration and decision support of DRFS with meeting points.

This work was supported by the Luxembourg National Research Fund (C20/SC/14703944).
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