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1 Introduction

Autonomous Mobility-on-Demand (AMoD), where customers request trips from their origin and
are assigned an autonomous vehicle from a fleet to take them to their destination, has the poten-
tial to play a crucial role in future sustainable transport. AMoD offers passengers a personalized
mobility service while eliminating the maintenance and parking costs associated with owning a
private vehicle. Due to its high flexibility, AMoD is gaining enormous popularity around the
world. However, a core challenge for the AMoD paradigm lies in the spatio-temporal nature of
urban mobility, where trip origins and destinations are asymmetrically distributed (e.g., com-
muting downtown in the morning and vice-versa in the evening), making the overall system
imbalanced and sensitive to disturbances. Operators can try to overcome this issue by manually
rebalancing vehicles to anticipate future demand, or by developing dynamic pricing strategies
to (dis)encourage trips between particular origin-destination pairs to promote a more desirable
distribution of the vehicle supply. However, this presents a challenging control problem.

While traditionally, the problems of vehicle rebalancing and dynamic pricing have been tack-
led either through the lenses of heuristics and optimization (Zardini et al., 2022), the most
recent literature focuses on learning-based approaches, mainly due to their scalability and ability
to handle dynamic stochastic environments - see Qin et al. (2022) for an extended survey. How-
ever, existing approaches consider a single-operator scenario. In modern liberal economies, this
assumption is highly unrealistic. Therefore, in this work, we consider a multi-operator scenario,
which we formulate as a multi-agent reinforcement learning (RL) problem, where each agent
centrally controls the vehicles in its own fleet without having knowledge about the competitor’s
states and actions. To the best of our knowledge, this is the first work to demonstrate that
learning-based approaches are robust to the added stochasticity in the environment, being able
to rebalance their fleet and dynamically set prices accounting for the interplay with the competi-
tors and to empirically show that the learned policies converge to an equilibrium. Furthermore,
we leverage this multi-agent RL setup to empirically study the market dynamics and the achieved
equilibrium (e.g., regarding fleet size and the introduction of new competitors).

2 Methodology

Our starting point is the bi-level framework proposed by Gammelli et al. (2022) for AMoD
rebalancing, where a soft actor-critic (SAC) RL agent decides the desired share of vehicles in each
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area (higher-level action - parameterized by a Dirichlet distribution). Then, solving a minimum
rebalancing cost flow problem determines the actual vehicle flows between areas (lower-level
action). Both the actor and critic use a graph neural network (GNN) architecture, where each
area corresponds to a node in the graph, in order to capture the spatial relationships between
the states of the different areas. The demand in each area is simulated by a Poisson process
with the arrival rate based on real-world data. We extend this centralized control framework to
a multi-agent setup by assuming identical (but independent) RL architectures for both agents,
without knowledge sharing about states and actions.

The reward of each RL agent corresponds to the operator’s profit, defined as the difference
between revenue from trips and rebalancing costs. To model user behavior, we incorporate the
possibility of trip cancellations, where users may reject trips based on their price. We determine
the probability of cancellation using a sigmoidal curve, specifically the Hill equation, which is
shaped based on the population-level value-of-time (VOT). Its input is a value-of-a-ride (VOR)
variable, representing the ratio of trip price to trip length, with trip length derived from data. We
also simulate users’ choice of AMoD operators in proportion to the VOR. Finally, we introduce
dynamic pricing into the framework by extending the GNN output to include a Gaussian random
variable that controls pricing. Concretely, we determine the trip price by a (linear) regression
model based on travel time, with the GNN output acting as the regression coefficient.

3 Preliminary experiments

All our preliminary experiments were performed in the New York scenario provided by Gammelli
et al. (2022). We will extend to other scenarios as part of our future work.
From single-agent to multi-agent setup. We begin by considering the transition from a
single-operator scenario to one with two, where each operator has a fleet size of exactly half the
fleet size of the single-operator version (374 cars). As the results in Table 1 show, the combined
(system) reward of the two agents in the multi-agent setup is slightly lower compared to the
single-agent setup, indicating that the shift from a monopolistic market to a competitive market
has an effect. This could be due to the increased stochasticity of the environment, which adds
complexity for the agents operating in it. They must now account not only for the effects of their
own actions but also for the unpredictable behavior of their competitors. Despite this, the system
reward remains close to that of the single-agent case (within one std. dev.), indicating that the
RL approach is robust to the added stochasticity of the environment. Interestingly, while the
system converges to an equilibrium, the two agents converge to different behavior policies, as
seen in Figure 1. Agent 1 ends up serving more demand, leading to a higher profit, suggesting
distinct strategies by each operator.

Model Reward Served demand Cancellations
Single-agent SAC without cancel. 14471± 317 1020± 20 -
Multi-agent SAC without cancel. 14184± 298 985± 26 -
Multi-agent SAC with cancel. 12483± 406 978± 27 157± 8

Table 1 – The total (system) reward of training SAC in single-agent and multi-agent setups.

Adding cancellations and dynamic pricing. We now introduce the possibility of cancel-
lations, i.e. users rejecting trips according to their price. As expected, the results in Table 1
show a lower overall system reward in the environment with cancellations, despite the served
demand remaining relatively stable. These findings motivate the expansion of the agents’ con-
trol capabilities to handle both rebalancing and dynamic pricing simultaneously. By doing so,
the agent can increase profit in high-demand regions, better mitigate cancellations, and proac-
tively manage manual vehicle rebalancing when necessary. By allowing for dynamic pricing, the
system achieves a profit approximately. 40% higher (17445 ± 319) compared to the fixed-price
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(a) Reward for each agent/actor (b) Served demand (c) Rebalancing cost

Figure 1 – Reward, served demand, and rebalancing cost for each actor in the multi-agent setup.

scenario, by being able to exploit the customers’ willingness to pay. Figure 2 shows that again,
the system converges to an equilibrium, while the agents learn different behavior policies. The
average prices per minute of actors 1 and 2 are $2.49 and $2.03, respectively, both higher than
the original average price from the data ($1.54). One actor quickly learns to adopt an undercut-
ting strategy, consistently setting lower prices than the competitor to capture more demand and
reduce cancellations, albeit at the cost of lower revenue per trip. Notably, despite these different
strategies, both actors achieve comparable profits.

(a) Reward per actor (b) Prices

(c) Rebalancing cost (d) Served demand

Figure 2 – Average rewards, prices, rebalancing costs, and served demand over the training.

Varying fleet sizes in a multi-agent setup. A critical factor contributing to the efficiency
and profit of an AMoD system is fleet size. Therefore, we explore its impact on the learned
behavior policies. As shown in Table 2, a decrease in fleet size leads to an increase in price. This
outcome is expected, as the agent raises prices to shift some of the unmet demand —caused by
limited capacity— into demand lost due to cancellations, thus balancing capacity constraints with
profitability. Interestingly, we observe a decrease in profit when the fleet size exceeds 374 cars,
suggesting that the additional vehicles merely introduce higher operational costs. For reference,
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we perform a similar sensitivity analysis on the fleet size in the monopolistic (single-agent) setup.
The results in Table 2 show a similar relationship between fleet size and the average price set
by the policy. However, a key insight is that the multi-agent scenario results in lower overall
prices, making the system more favorable for users. This highlights the competitive nature
of the multi-operator scenario where each actor reduced prices to capture market share. The
combination of lower prices and reduced profits in the multi-agent setup clearly illustrates the
difference between monopolistic and competitive markets. In the monopolistic setting, prices are
mainly driven by the supply-demand ratio, resulting in a supply-focused model. In contrast, the
multi-agent environment provides a more complex dynamic where the actors do not only have
to take supply and demand into account but also the competitive nature of the system.

Environment with 2 competitors Monopolistic setup
Fleet
size

Avg. price
actor 1

Avg. price
actor 2

Best reward Avg. price Best reward

100 3.3452 ±0.0406 3.8928 ±0.0137 9408± 536 3.99± 0.06 10249± 579
187 2.9118 ±0.0527 1.9239 ±0.0054 10756± 483 3.78± 0.09 14062± 651
200 2.3317 ±0.0460 2.4960 ±0.0645 13691± 371 3.14± 0.07 14730± 563
300 2.3071 ±0.0508 2.5242 ±0.0677 16621± 415 2.99± 0.04 15627± 579
374 2.4921 ±0.0550 2.0306 ±0.0131 17445± 319 2.40± 0.02 18926± 866
400 1.9691 ±0.0659 1.6678 ±0.0211 15014± 511 2.19± 0.02 17737± 660

Table 2 – Average prices and rewards (profit) variation based on the fleet size.

Analysis of new competitors in an established monopolistic market. Lastly, we analyze
how an already established (pre-trained) monopolistic RL agent reacts to the introduction of
a new competitor in the market. To do so, we further train this agent, which had previously
learned a monopolistic policy, in an environment with an additional competitor of equal fleet
size. As illustrated in Figure 3, while the pre-trained agent initially performs better, the new
(untrained) competitor quickly adapts by undercutting prices and capturing a larger share of the
demand. The established agent is slow to adjust its (monopolistic) pricing strategy, allowing the
competitor to outperform it.

Figure 3 – Price (left) and reward (right) evolution over the training episodes.
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