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1 INTRODUCTION
Origin-destination (OD) matrix estimation is essential in transportation planning, as it pro-
vides a detailed understanding of travel patterns, supporting infrastructure development, traffic
management, and urban planning decisions. As for Viti (2012), OD matrices have been tradi-
tionally estimated in different ways: direct sampling estimation (e.g. travel surveys and traffic
counts) and model estimation; the former involves applying a system of models that computes
the approximate number of journeys made with a certain mode, for a specific purpose during
a certain period of time. OD estimation methods can typically generate either time-dependent
(dynamic) or time-independent (static) matrices Peterson (2007), and can be estimated using
either trip-based or activity-based models, Dong et al. (2006). While many methodologies have
been explored in OD estimation, probabilistic data-driven models started emerging as a strong
alternative, especially in data-scarce scenarios, as they aim to infer the underlying distributions,
rather than focusing solely on raw data, Nakatsuji (2011). This is a common problem in OD
estimation when using survey data, as these samples are often limited in size or in quality. Kr-
ishnakumari et al. (2020) presents their research in which they address OD matrix estimation
under data scarcity by leveraging 3D supply patterns. While this approach simplifies the esti-
mation process, it relies on various assumptions about route choice, which may limit flexibility
and accuracy. To position ourselves within the current research, the presented paper describes
a methodology for dynamic OD estimation using trip-based modeling with activity components
using data-driven modeling, specifically Sparse Variational Gaussian Processes (SVGPs), de-
scribed in Section 2. Unlike previous methods, SVGP makes no assumptions about the dataset
and does not involve fitting; instead, its predictions are based solely on the statistical relevance
and noise/uncertainty of the data Carvalho (2014). This affirmation is confirmed by the Case
Study, presented in Section 3, in which the SVGP is tested under data-scarcity conditions (up
to 10% of the initial dataset as the training set), providing robust and precise predictions. Our
model integrates elements from both trip and activity-based approaches by sequentially predict-
ing trip attributes—such as start time and destination, alongside the trip’s purpose, allowing
us to predict both static and dynamic OD matrices. To the authors’ knowledge, no previous
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(a) Single Trip Prediction (b) Full Trip Prediction
Figure 1 – Proposed trip prediction structure.

trip-based dynamic OD matrix estimation research has included activity information within the
model.

2 METHODOLOGY
A Gaussian Process (GP) (Gelman et al. (2021)) is a statistical model used to estimate probabil-
ity distributions for both linear and non-linear data, allowing predictions to be made in unseen
regions of a problem, complete with associated uncertainty. However, due to the high computa-
tional complexity of these models(O(n3)), in real applications, GPs are often replaced by Sparse
Variational Gaussian Processes (SVGP), which significantly reduces computational complexity
by approximating the full GP, Ghosh et al. (2006). The use of the SVGP for OD matrix esti-
mation offers several advantages. Being a data-driven model, it allows different types of data to
be used as input (e.g. traffic counts), ensuring flexible modeling. In addition, the SVGP allows
for control over the computational complexity by reducing the number of induction points, a
subset of points used to approximate the full GP, thus simplifying the computations without
significantly compromising accuracy. Finally, the accuracy of these models does not depend on
the amount of data available, but on its statistical relevance Titsias (2009). In this study, we use
the SVGP to predict dynamic OD matrices, specifically our goal is to use SVGPs to predict, for
each trip, the start time, destination, activity type, and the arrival time. The ability to
predict individuals’ activity types, along with their associated times and locations, provides key
insights into how people use transportation systems. The strength of this methodology is that
these insights are derived without relying on assumptions (e.g. amount of shortest paths used
for each OD pair, distribution of flows on the network), offering a more unbiased approach. To
maximize prediction accuracy while minimizing the number of SVGP models used, we opted for
a chain architecture where each SVGP model’s output serves as the input for the subsequent
model, as shown on Figure 1b. During the training phase, all inputs to each SVGP come solely
from the training dataset, while in the prediction phase, the inputs are provided by the outputs
of the previous SVGP models.

Figure 1 shows the full framework of our model to predict a full trip for each individual. Figure
1a shows the structure of the prediction process for a single trip, where we begin by training
the first SVGP using socio-demographic data to predict the departure time. This prediction,
combined with the socio-demographic inputs, is then fed to a second SVGP to predict the activity
to be performed. The same iterative approach is applied to predicting the destination and arrival
time. Figure 1b shows then how we extend this methodology to the full activity chain: after the
first trip has been predicted, subsequent trips are predicted sequentially, using information from
previous trips and input about the total number of trips to be made. To reduce computational
complexity and enhance the prediction, we applied Principal Component Analysis (PCA, Djukic
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et al. (2012)) to the input data, as it reduces the input space while filtering irrelevant components.
As the SVGP is still computationally intensive, we optimized the process by allowing our method
to make predictions simultaneously over a large population, making it scalable and efficient,
rather than predicting individually for each person. The problem faced working with SVGPs
in multi-output predictions is that these models produce only one continuous output at a time.
To predict four variables per trip — departure and arrival times, destination zone, and activity
type — we separated the tasks into discrete-choice predictions (zone and activity) and regression
predictions (departure and arrival times). For the discrete-choice predictions (zone and activity),
as only one output is provided by each model, we needed to train one SVGP for each choice
option. The SVGP were then trained to output a continuous value between 0 and 1, which
represents in our case the likelihood that a particular input corresponds to that specific choice.
To achieve this, we applied a softmax-like transformation to the outputs of all SVGP to generate
a Probability Density Function (PDF ) to obtain the relative probabilities, constructing then a
Cumulative Density Function (CDF ) to sample and select the specific choice. For the remaining
variables to predict (arrival and departure time), we trained one SVGP for each regression. This
whole process is then repeated for each possible trip that is available in the dataset, as shown in
Figure 1b. By then chaining these predictions, we were able to obtain the final OD matrices.

3 RESULTS
To demonstrate the effectiveness of the proposed methodology, we conducted experiments to
reconstruct full Origin-Destination (OD) matrices from different levels of limited samples. As
input, we used a Travel Survey, which includes more than 80,000 trips. To assess the capability
of the model under data scarcity, we created training sets sampling from 80%, 50%, 30%, and
10% of the full dataset. Analysis of the Luxmobil dataset reveals that about 95% of respondents
made 6 trips or fewer daily, with a maximum of 10 trips. For this study, we opted to cap the
number of predicted trips at 6 predictions, as it is still representative of the dataset.

Full OD Work Home School
NRMSE MAE NRMSE MAE NRMSE MAE NRMSE MAE

T
ra

in
se

t
% 80% 0.0105 0.1916 0.0071 0.0906 0.0218 0.0329 0.0063 0.0240

50% 0.0113 0.1226 0.0089 0.0579 0.0257 0.0205 0.0061 0.0149
30% 0.0101 0.0752 0.0089 0.0359 0.0223 0.0124 0.0055 0.0090
10% 0.0109 0.0264 0.0086 0.0120 0.0122 0.0043 0.0047 0.0033

Table 1 – Prediction error results for the Full OD matrix estimation, as well for the OD matrices
for Work, Home and School.

Figure 2 – Absolute error ranking for trip activity predictions using 10% Training set
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Table 1 compares the real OD matrices with the predicted output for each level of the training
set. First, we compare the Full OD matrix, meaning without any segmentation per activity,
and then 3 OD matrices divided by activity, namely Work, Home, and School. We use
NRMSE (Normalized Root Mean Square Error) and MAE (Mean Absolute Error) to evaluate
the prediction accuracy of our model, as these metrics provide insights into both the relative error
scale and absolute deviations, respectively. What we show with Table 1 is that the SVGP model
not only provides strong prediction accuracy, but this remains consistent even with reduced data.
This is due to its Bayesian nature, which infers a posterior distribution that depends more on the
statistical relevance of the data than on its volume. Moreover, the granularity of the presented
model, with each prediction using its own SVGP, allows for an efficient update using new data,
reducing the need for full model retraining. Additionally, if any prediction shows lower accuracy,
we can refine its training parameters individually without affecting other SVGPs in the model.
To further showcase the capability of this model under data scarcity, Figure 2 shows the absolute
error when trying to predict the entire dataset using only 10% of it as the training set for the
SVGP. While the prediction error is concentrated in a few areas (mainly due to the almost
absence of data), 90% of the predicted trips fall within a margin of error considered acceptable,
especially considering the training set size. As previously mentioned, this concentration of errors
is not a major concern, as the structure of the model allows for individual updates to SVGP
without the need for full retraining.

4 CONCLUSIONS
This research presented the application and effectiveness of the SVGP model for dynamic OD
matrix estimation under data-scarcity conditions. The model successfully provides accurate pre-
dictions for all trip variables and activities without relying on any assumptions, while showcasing
good prediction capability even under data-scarcity conditions. This achievement provides valu-
able foundations for exploring future theoretical models exploring the relationship between trips
and activities. Further research will include the prediction of transport modes and future travel
patterns. In addition, the flexible structure of the model accommodates different types of input
data and allows for optimization of individual zones, enabling rapid updates of the SVGPs. This
could potentially enable the model to be used for real-time forecasting applications in the future.
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