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1     INTRODUCTION 
 
Traditional activity-based models (ABMs) relying on household travel survey (HTS) data suffers 

from low sampling rates due to high survey costs and this leads to the “zero-cell problem”, the 

exclusion of activity schedules that exist in the true population. This issue results in the generation 

of less diverse activity schedules, referred to as the problem of “low spatiotemporal heterogeneity”, 

which leads to inaccurate demand forecasts that overlook sparse mobility patterns. Additionally, the 

long data collection cycle of HTS makes it difficult to capture the up-to-date changes. 

Deep generative models (DGMs), such as variational autoencoder (VAE) and generative 

adversarial networks (GAN), are well-suited for modeling high-dimensional joint distributions. 

Previous research has demonstrated that DGMs achieve greater heterogeneity in the population 

synthesis using HTS data (Borysov et al., 2019). However, the HTS data used for training DGMs is 

lacking in heterogeneity and outdated, limiting their performance in activity scheduling. 

This study proposes a novel DGM-based data fusion method for generating activity schedules, 

which preserves the comprehensive information of HTS while maintaining the high spatiotemporal 

heterogeneity and up-to-date nature of SC data. The proposed method, collaborative generative 

adversarial networks (CollaGAN), incorporates two discriminators during the data fusion process, 

ensuring that the strengths of both datasets are preserved. To enhance the feasibility of the generated 

activity schedules, three novel loss functions are designed. This approach produces spatiotemporally 

heterogeneous and up-to-date activity schedules. 
 

2     METHODOLOGY 
 
VAE compresses high-dimensional data into a lower-dimensional latent space, such as a multivariate 

normal distribution, to model its underlying distribution (Kingma, 2013). Based on this VAE 

framework, the spatiotemporal attributes of HTS and SC data are mapped into the mean and variance 

of the latent distribution 𝑝(𝑧) through a single encoder. The encoder forces the outputs to follow 
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𝑝(𝑧) by minimizing the following Kullback-Leibler (KL) divergence loss, which measures the 

distance between two probabilistic distributions:  

                ℒ𝐾𝐿,hts = −𝐷𝐾𝐿[𝑞𝜙(𝑧|𝑇hts, 𝑆hts)||𝑝(𝑧)]                              (1) 

                ℒ𝐾𝐿,sc = −𝐷𝐾𝐿[𝑞𝜙(𝑧|𝑇sc, 𝑆sc)||𝑝(𝑧)]                                    (2) 

Here, 𝑇 and 𝑆 represent the temporal attributes (i.e., start time and duration) and the spatial attributes 

(i.e., location) of activity schedules, respectively. Ultimately, the distribution learned by the encoder 

becomes 𝑞𝜙(𝑧|𝑇, 𝑆)fus , a harmonized form of 𝑞𝜙(𝑧|𝑇hts, 𝑆hts) and 𝑞𝜙(𝑧|𝑇sc, 𝑆sc). We design a 

harmony loss function to ensure that both datasets maintain consistency within the uniform latent 

space, allowing efficient information transfer between HTS and SC: 

                ℒ𝐾𝐿,ℎ𝑎𝑟 = −𝐷𝐾𝐿[𝑞𝜙(𝑧|𝑇sc, 𝑆sc)||𝑞𝜙(𝑧|𝑇hts, 𝑆hts)]                        (3)  

During the inference process, the generator generates the attributes of activity schedules from 

the latent vector sampled from the fused distribution. In this process, we train the generator in a 

semi-supervised manner to generate the qualitative attributes. The generator restores travel mode 𝑀 

and activity purpose 𝐴 from HTS data and infers 𝑀 and 𝐴 from SC data. It is trained to minimize 

the following reconstruction loss between the inputs from both data sources and the generated data:  

  ℒ𝑟𝑒𝑐𝑜𝑛,hts = ‖𝑇hts − �̂�hts‖ + ‖𝑆hts − �̂�hts‖ + ‖𝑀hts − �̂�hts‖ + ‖𝐴hts − �̂�hts‖              (4)  

  ℒ𝑟𝑒𝑐𝑜𝑛,sc = ‖𝑇sc − �̂�sc‖ + ‖𝑆sc − �̂�sc‖                                                                                             (5) 

‖∙‖ represents the categorical cross-entropy. The generator can reconstruct the original data from the 

latent space by minimizing the reconstruction loss. When 𝑧~𝑝(𝑧)  is fed into the generator, it 

generates activity schedules that conform to the distribution 𝑝(𝑇, 𝑆, 𝑀, 𝐴)fus. 

We involve discriminators 𝐷hts and 𝐷sc from each dataset’s perspective in an adversarial game 

with the generator 𝐺 to ensure that the comprehensiveness of HTS data and the heterogeneity of SC 

data are preserved during the data fusion process. Based on the strengths of each data, 𝐷hts evaluates 

the set of 𝑇, 𝑀, and 𝐴, whereas 𝐷sc concentrates on the combination of 𝑇 and 𝑆. The generator and 

the two discriminators form a CollaGAN structure and engage in a min-max game with the following: 

min
𝐺

max
𝐷ℎ𝑡𝑠,𝐷𝑠𝑐

𝑉(𝐷, 𝐺) = 𝛦[𝑙𝑜𝑔 𝐷ℎ𝑡𝑠(𝜓ℎ𝑡𝑠𝐺(𝑧))] + 𝛦[𝑙𝑜𝑔(1 − 𝐷ℎ𝑡𝑠(𝜓ℎ𝑡𝑠𝐺(𝑧)))] 

                                          + 𝛦[𝑙𝑜𝑔 𝐷𝑠𝑐(𝜓𝑠𝑐𝐺(𝑧))] + 𝛦[𝑙𝑜𝑔(1 − 𝐷𝑠𝑐(𝜓𝑠𝑐𝐺(𝑧)))]                     (6)  

where 𝜓ℎ𝑡𝑠  and 𝜓𝑠𝑐  are functions that extract the attributes to be assessed by 𝐷ℎ𝑡𝑠  and 𝐷𝑠𝑐 , 

respectively. Through this process, we ensure that the strengths of each dataset are retained in the 

fused joint distribution learned by the generator. 

To prevent the generation of infeasible attribute combinations that are unlikely to exist, we apply 

regularizations during the training process. Boundary loss (Kim and Bansal, 2023) in Equation 7 

measures the distance between the training samples and the generated samples at the boundary of 

the sample space, distinguishing infeasible samples. Let �̂�𝑗 represent 𝑚 generated data points in a 

mini-batch, while 𝑋 refers to the entire training dataset with a size of 𝑁. 

  𝑅𝐵𝐷(�̂�, 𝑋) =
1

𝑚
∑𝑗=1

𝑚  min𝑖∈{1:𝑁}   (Dist (�̂�𝑗 , 𝑋𝑖))                                      (7)  

We implement a regularization loss that acts as the expert-designed constraints found in 

traditional econometric models for activity scheduling. We define the range of feasible attribute 

combinations and apply a significant penalty whenever the generator produces samples outside that 

range, ensuring the generated activity schedules align with domain knowledge. For example, we 

assume every first trip to be a home-based trip and apply the loss if the first activity purpose is home 
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return. Since SC data only contains transit records for transit users, the fused joint distribution can 

become biased toward transit users and shorter trip chain lengths. To correct this bias, we apply 

rejection sampling using the fused joint distribution estimated by the generator as the proposal 

distribution.  

 

3     RESULTS AND DISCUSSION 
 
We apply the feasibility and heterogeneity metrics, proposed by Kim and Bansal (2023). Feasibility 

(Equation 8) measures how well the generated data mimics the population. Heterogeneity (Equation 

9) indicates the degree to which the generated data captures the variations in the population data. 

1(∙) represents an indicator function used for counting. The overall quality of the model is measured 

using the F1-score, which is the harmonic mean of these two metrics, as shown in Equation 10. 

  Feasibility =
1

𝑀
∑ 1𝑋�̂�∈𝑋

𝑀
𝑗=1                                                    (8) 

  Heterogeneity =
1

𝑁
∑ 1𝑋𝑖∈�̂�

𝑁
𝑖=1                                                    (9) 

  F1-score =
2× Feasibility × Heterogeneity 

 Feasibility + Heterogeneity
                                    (10) 

We combined the HTS data collected in 2010 and 2016 from Seoul to create the hypothetical 

population (h-population). We extracted only the transit trips from the h-population to create the 

hypothetical SC (h-SC) data and sampled 1% of the data, matching the sampling rate of the HTS, to 

generate the hypothetical HTS (h-HTS) data. 

We compared the proposed data fusion method against benchmark models in Table 1. The partial 

joint distributions are considered on a trip-chain basis or a trip basis. Prototypical activity schedules 

refer to the traditional matrix fitting method, which aligns the sample's marginal distribution with 

the population. VAE-GAN is a single-source model where a single discriminator is connected to a 

VAE trained solely on h-HTS data. The proposed data fusion method addresses the low 

heterogeneity problem caused by the low sampling rate of HTS, outperforming the VAE-GAN. 

We also conducted a case study that fuses the real-world data sources: the 2016 HTS and SC 

data collected from Seoul. Figure 1 illustrates the commuting and home return locations observed in 

the HTS data, as well as those generated by single-source model (No fusion) and CollaGAN models, 

respectively. The CBD and GBD correspond to Seoul's major business districts. Compared to the 

VAE-GAN model, the CollaGAN model effectively captured commuting patterns in the business 

districts while also efficiently generating home-return patterns in the business districts, which are 

underreported in HTS data. 

 

Table 1 – Evaluation results of proposed method compared with benchmark models 

Model Metric Attribute combination 

Trip-chain level Trip level 

𝑃(𝑇) 𝑃(𝑆) 𝑃(𝑇, 𝑆) 𝑃(𝑇, 𝑆, 𝐴) 𝑃(𝑇, 𝑆, 𝑀) 

Prototypical Feasibility 100.0% 49.3% 75.7% 71.1% 63.6% 

activity Heterogeneity 64.4% 7.7% 7.1% 6.7% 3.8% 

schedules F1-score 78.4% 13.4% 13.0% 12.3% 7.3% 

VAE-GAN Feasibility 60.1% 28.1% 67.4% 60.8% 50.0% 

 Heterogeneity 80.0% 50.8% 68.9% 62.6% 51.1% 

 F1-score 68.6% 36.2% 68.1% 61.7% 50.5% 

CollaGAN Feasibility 77.0% 46.3% 78.1% 72.2% 65.1% 

 Heterogeneity 85.3% 68.5% 80.8% 73.7% 60.3% 

 F1-score 80.9% 55.2% 79.4% 72.9% 62.6% 
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Figure 1 – Joint distribution of activity purposes and locations in the case study  
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