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1 INTRODUCTION

Autonomous vehicle driving should address several challenges related to the safety and comfort
of the passenger. Vehicles evolve in uncertain environments, which raises issues in maintaining
driving performance. The simulations of autonomous vehicles cannot reproduce the complexity
of a real-life environment with all its unexpected events. Our research has been focused on
generating reference trajectories for autonomous vehicles. In trajectory planning, a reference
trajectory is a predefined prediction of the path of the vehicle computed on a given time horizon.
It is used as a benchmark to compare with the simulated path of the vehicle in real-life conditions.
During the driving, it compensates for human errors of inattention or judgment by handling
constraints which model road conditions and complex situations, such as unexpected behaviour
of other vehicles (Dempster et al., 2023).

We developed a joint chance-constrained optimal control model for reference trajectory plan-
ning as it presents robustness to stochastic components. The uncertainty due to external factors
should be considered in the control. The chance-constrained approach guarantees that a certain
level of performance can be expected from a model. We cannot assume to find a feasible solu-
tion to the optimal control problem that satisfies all constraints at all time steps because of the
stochastic term. Therefore, the chance constraint captures the probability of satisfaction of a
constraint and asserts this probability to be higher than a threshold α we determine. Thanks
to (Prékopa, 2013) results, we can formulate our chance-constrained optimal control problem
as a deterministic equivalent second-order conic-constrained optimal control problem. Our ap-
proach does not require relaxation or approximation of the constraints, so we are able to find
the exact result rather than bounds for the probability. The robustness of chance constraints is
guaranteed by the equivalence between a purely deterministic formulation of the problem and
the probabilistic term subject to uncertainty.

2 METHODOLOGY

2.1 Optimal control problem

The optimal control problem in continuous time is described as follows. Let Z be the feasible
set of states, U be the feasible set of control inputs. Let z(t) ∈ Z and u(t) ∈ U be the state and
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control variables, respectively.
The cost function is an integral between initial and final times t0 and tn, with 0 ≤ t0 ≤ tn, with
ℓ : Z×U 7−→ R+ the integrand. The function designing the system dynamics of the control-state
f : Z × U 7−→ Z and c : Z × U 7−→ R is the inequality constraint function.

min
z(·),u(·)

w tn

t0
ℓ(z(t), u(t))dt (1)

s.t. ż(t) = f(z(t), u(t)), (1a)
c(z(t), u(t)) ≤ 0, (1b)
z (t0) = zinit, z (tn) = zterm, (1c)
z(t) ∈ Z, u(t) ∈ U

The constraint (1a) is the control-state equation of the system, (1b) are the constraints on control
and state variables and the constraint (1c) defines the initial and terminal states zinit and zterm
of the system.

2.2 Continuous-time chance-constrained reference trajectory generator

The unicycle kinematic model gives the following state of the ego vehicle, the vehicle on which
we perform the control, at time t:

zt = [xt, yt, θt, vt]
T (2)

where xt is the longitudinal position, yt is the lateral position, θt is the heading angle of the
vehicle and vt is the linear speed. The control input at time t is given by

ut = [at, ωt] (3)

where at is the linear acceleration and ωt is the angular velocity. The ego vehicle’s control-state
relationship is given by :

dzt
dt

= f(zt, ut) (4)

where f(zt, ut) = [vt cos(θt), vt sin(θt), ωt, at]
T . The optimal control problem proposed for the

reference trajectory generation is the following :

min
u,z

w T

0
wg ∗D2

t (xt, yt) +wv ∗ (vr − vt)
2 +wa ∗ a2t

+wω ∗ ω2
t +wj ∗

(
dat
dt

)2

+wh ∗H(θt)
2

+wp ∗ P (xtgtt , ytgtt , xt, yt) dt (5)

s.t.
dzt
dt

= f(zt, ut), (5a)

L(xt, yt) ≤ 0, (5b)
|vt| ≤ vmax, (5c)
|ωt| ≤ ωmax, (5d)
|at| ≤ amax, (5e)∣∣∣∣datdt

∣∣∣∣≤ jmax, (5f)

K(xtgtt , ytgtt , xt, yt) ≥ dmin (5g)

xtgtt , ytgtt , xt, yt, vt ∈ R+

at ∈ R θt, ωt ∈ [−π, π]
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With u = (u(t))t∈R+ and z = (z(t))t∈R+ vectors of input control and state, respectively. The
quantities xtgtt and ytgtt are the target vehicle’s longitudinal and lateral positions measured by
the ego vehicle. The target vehicle corresponds to a vehicle we do not control, which the ego
vehicle must avoid. The distance to the next waypoint at instant t is D2

t (xt, yt) : R2
+ 7−→ R+. In

our study, we consider waypoints on the road’s centre lane only. The recommended linear speed
value is vr.
The jerk term is

(
dat
dt

)2, which is the linear acceleration rate of change over time. It is responsible
for the comfort of the passenger by performing smooth acceleration. A jerk that has a high value
can have physiological effects on the human body. We assume the control variable at to be
differentiable on [0, T ].
The distance between the heading angle of the vehicle and the degree of curvature of the centre
lane is described by H(θt) : [−π, π] 7−→ R+ and P (xtgtt , ytgtt , xt, yt) : R4

+ 7−→ R+ is a potential
field function modelling the vehicle’s Adaptive Cruise Control (ACC) feature, which adapt the
speed of the vehicle when it becomes too close of other vehicles (Jiang et al., 2024).
The function K(xtgtt , ytgtt , xt, yt) : R4

+ 7−→ R+ in constraint (5g) represents the distance between
ego and target vehicles. The constraint enforces a minimum distance to prevent collisions. The
function L(xt, yt) : R2

+ 7−→ R+ and constraint (5b) model the distance between the coordinates
of the ego vehicle and the limits of the road.

2.3 Joint probabilistic model

Let’s suppose ∀t ∈ R+xtgtt ∼ N (µxt , σxt) and ytgtt ∼ N (µyt , σyt) independent distributions.
Constraint (5g) is the stochastic constraint. This assumption models the uncertainty as discussed
in Section 1. We formulate the chance constraint such as :

P(|xtgtt − xt + ytgtt − yt| ≥ dmin) ≥ α (6)

Let’s consider the new problem with joint probabilistic constraints. Compared to previous re-
search, it considers uncertainty due to both terms (xttgt)t∈R+ and (yttgt)t∈R+ to be covered by the
entire probability (Geletu et al., 2013):

P
(
xtgtt ∗ (−1) ≤ −dmin√

2
− xt; y

tgt
t ∗ (−1) ≤ −dmin√

2
− yt

)
≥ α (7)

We introduce γ1, γ2 artificial variables with γ1 + γ2 = 1, b1t = −dmin√
2

− xt, b2t = −dmin√
2

− yt and
we obtain the equivalent problem:

P(xtgtt ∗ (−1) ≤ b1t )P(y
tgt
t ∗ (−1) ≤ b2t ) ≥ αγ1+γ2 (8)

By studying independently the two constraints

P(xtgtt ∗ (−1) ≤ b1t ) ≥ αγ1 (9)

P(xtgtt ∗ (−1) ≤ b2t ) ≥ αγ2 (10)

The deterministic equivalent second-order conic constraints are :

F−1(αγ1)|σ
1
2
xt |+

dmin√
2

+ xt ≤ µxt (11)

F−1(αγ2)|σ
1
2
yt |+

dmin√
2

+ yt ≤ µyt (12)

With the sequential convex approximation algorithm (Scheffe et al., 2022), we can find suitable
values for γ1 and γ2 to adapt the concentration inequalities to the weight of uncertainty due to
stochastic variables (xttgt)t∈R+ and (yttgt)t∈R+ .
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3 DISCUSSION

In our research, we use chance constraints to obtain a continuous-time approach using dynamic
solvers to solve the optimal control problem of trajectory planning for autonomous vehicles. It
presents the advantage of a generic model, which means it can be derived for other vehicles by
adding constraints for modelling other environments. Those constraints could consider physical
parameters of height, depth, wind velocity, or strength of ocean currents to control different
types of vehicles such as aircraft, spacecraft, or submarines.

We conducted our study with joint chance constraints to distribute the importance of the
constraints with respect to the different stochastic variables (Schmid et al., 2024). Depending on
the scenario and the time step, the significance of errors of measurements is due to one source of
uncertainty or another. The stochastic model can compensate for one constraint by embedding
stochastic components into multiple deterministic equivalent second-order conic constraints to
control the distance between vehicles when they get too close. The weights are adapted so the
most restrictive component is not violated in the solution of the optimal control problem.

Our model is robust to various types of scenarios. Urban scenarios are handled with good
performances, as most classical ones obtain a feasible solution. A solution is considered unfeasible
when it is not realistic, which happens when the ego vehicle, the one we control, waits at the
beginning of the simulation to have some distance from the target vehicle, the one we avoid. The
continuous-time approach is also robust to high-speed highway scenarios, as it represents better
real-life conditions.
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