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1 INTRODUCTION

The field of transportation science and logistics has long grappled with vehicle routing problems
(VRPs), a class of combinatorial optimization problems. Since the seminal work by Dantzig &
Ramser (1959), numerous VRP variants have been developed to address real-world constraints,
including time windows (Kohar et al., 2023), overtime expenses (Mayerle et al., 2020), and fuel
consumption (Seyfi et al., 2023). Most prior studies on VRPs utilized simplified networks, where
customer nodes are directly connected and travel times are assumed to be constant. However,
real road networks include customer nodes, road nodes, and depots, with travel times vary-
ing dynamically based on chosen paths and time-dependent link speeds. Therefore, considering
real-world road networks and dynamic travel times between customer nodes in VRPs is of more
practical significance. Additionally, during customer visits, vehicles often need to find suitable
parking at or near each customer’s location to facilitate the delivery or pickup of goods. How-
ever, parking availability at these locations is often uncertain due to factors such as temporary
obstacles, geographical constraints, or capacity limitations. The rapid evolution of urban logis-
tics and increasing congestion in metropolitan areas have made considering uncertain parking
availability crucial for improving operational efficiency and customer satisfaction. Thereby, we
propose a novel practical Time-Dependent Vehicle Routing Problem (TDVRP) with uncertain
parking availability.

Approaches to solving VRPs can be roughly divided into exact techniques, heuristic, and
deep learning-based techniques. Exact algorithms can, in principle, obtain optimal solutions,
but they are usually problem-dependent and their computational complexity increases exponen-
tially as the problem complexity grows. Compared with exact techniques, heuristic techniques
can obtain feasible solutions quickly to various VRPs. However, considering real road networks,
time-dependent travel speeds and uncertain parking availability significantly increases the com-
putational complexity of VRPs, making them inefficient. Deep learning-based techniques have
emerged as a promising approach to address these challenges. Kool et al. (2019) proposed the
Attention Model (AM) to effectively handle various routing problems. Following AM, Guo et al.
(2023) developed an AM with dimension-reduction and gate mechanisms (AM-DRGM) to effec-
tively solve the practical TDVRP. To more effectively address our proposed problem, we develop
the AM-GA3M, which extends AM-DRGM with node-type-specific and residual attention mech-
anisms.
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2 PROBLEM STATEMENT

A logistics company is tasked with transporting goods from its depot, where the vehicle initiates
and concludes its route, to N customer nodes that are geographically scattered in an urban
area. A fleet of homogeneous vehicles is deployed to provide transportation services, with all
vehicles departing from the depot at time 0 and sequentially delivering goods to customers
before returning to the depot. The speed of vehicles varies over time due to factors such as
traffic congestion, road conditions, and traffic regulations, which is considered as functions of
time and road segments. Additionally, delivery vehicles are required to complete their tasks
within a maximum working time limit. Each vehicle has a maximum capacity, and the total
weight of goods carried by each vehicle must not exceed this capacity. The location of each
customer node i is known, along with its demand qi. Each customer node has several potential
candidate parking lots where delivery vehicles can park. The availability of these parking lots
varies over time, and delivery vehicles are only allowed to park and provide services at one and
only one candidate parking lots designated for each customer node. If a vehicle parks in a full
parking lot, it incurs penalties for illegal parking, and the service time at each customer node
is dependent on the selected parking lot by the delivery vehicle. Especially, the parking lot for
the depot node is consistently available and coincide with the depot’s location. Given these
conditions, the objective of the problem is to minimize the total operation cost, including the
driving costs, penalty costs for illegal parking, fixed vehicle costs, and overtime pay.

The following assumptions are essential for formulating the mathematical model: (1) Each
customer’s demand is less than the vehicle’s capacity; (2) Each customer is served by exactly one
vehicle, only once; (3) Once a vehicle selects a target parking lot, it can only park and provide
service at that parking lot.

3 LEARNING MODEL

In the investigated problem, the locations of customer nodes and their corresponding parking
lots are often in close proximity, resulting in highly similar node feature information. The AM-
DRGM model proposed by (Guo et al., 2023) may struggle to effectively distinguish between
customer nodes and their associated parking lots, potentially leading to decreased problem-
solving performance. To address this challenge, we propose a Node-Type-Specific Attention
Mechanism (NAM), which can significantly improve the model’s ability to differentiate between
various node types and better capture the complex relationships among nodes. Additionally,
since integrating NAM into the AM-DRGM model results in a more complex network structure,
ensuring effective information propagation from input to output becomes a significant challenge.
To mitigate this issue, we introduce a Residual Attention Mechanism (RAM) (He et al., 2021)
to the AM-DRGM model. It can enhance information propagation throughout the model, facili-
tating the retention of critical features across various layers, thereby substantially improving the
model’s problem-solving performance.

Fig. 1 shows the architecture of AM-GA3M. The encoder of this model consists of a “N&DR-
Trans” block and two identical "Re-Trans" blocks. All these blocks are variants of the “Trans”
block proposed by Vaswani et al. (2017), which consists of one Multi-Head Attention (MHA)
layer and one linear layer. Both the “N&DR-Trans” and “Re-Trans” blocks modify the “Trans”
block by replacing its MHA layer: the former uses an N&DR-MHA layer (a Dimension-reducing
MHA layer (Guo et al., 2023) with the NAM), while the latter employs a Re-MHA layer (an
MHA layer integrated with the RAM). The encoder processes the input feature information
of all nodes, F = {f0, f1, · · · , fN ′}, where N ′ + 1 represents the total number of nodes, to
generate node embeddings, effectively capturing complex relationships and characteristics be-
tween nodes. For node i, the input feature is denoted as fi = {fi,0, fi,1, · · · , fi,N ′}, where each
fi,j = (xhi , x

v
i , qi, Ti,j,0, Pj,0) includes node i’s horizontal and vertical coordinates, demand, the
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Figure 1 – Architecture of the AM-GA3M

shortest travel time to node j at time 0, and node j’s parking availability probability at time
period 0.

The decoder of our model consists of a multi-head attention layer and a mask attention layer.
Based on the node embeddings output by the encoder and the index of the previously visited
node, it calculates the probability of each node being selected, thereby choosing the next node
to visit using either a greedy or sample strategy. The greedy strategy prioritizes selecting the
node with the maximum probability value, whereas the sample strategy assigns higher selection
weights to nodes with greater probabilities. The decoder executes multiple decoding operations
sequentially until all customer delivery requirements are met and the vehicle completes its route
by returning to the depot.

4 COMPUTATIONAL RESULTS

4.1 Experimental setting

Our experiments use a dataset that captures travel speeds across 240 consecutive 2-minute time
periods on a realistic urban road network. The network consists of 408 nodes and 1,250 directed
edges. To generate each problem instance, we randomly select a depot and N customer nodes
from the 408 road nodes. For each customer node, we generate 3 parking lots in its vicinity.
The service time for each customer is randomly sampled between 30 and 36 minutes. The
parking probabilities for each lot across different time periods are randomly sampled from a
uniform distribution. Customer demands are randomly sampled between 1 and 9, and the vehicle
capacity is set to 50. For this study, we evaluate our model using three distinct sets of problem
instances containing 20, 30, and 35 customers, respectively. In total, we generate 271,120 unique
problem instances for each size: the first 256,000 are allocated to the training set, the subsequent
10,000 constitute the test set, and the remaining instances are designated as the validation set.
To ensure reproducibility of the experimental outcomes, we employed a fixed random seed for
generating the training instances.

4.2 Experimental results

Table 1 shows the performance comparison between our AM-GA3M and three benchmarking
models. In our problem setting, each customer can park at their own location and is associated
with two additional potential parking lots. For example, “Instances with N = 20” represents that
there are 20 customer nodes and 40 parking nodes in each instance. Each learning-based model
uses either the greedy or the sample strategy to select the next node in solution construction.
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For example, “AM-GA3M (greedy)” represents that AM-GA3M with the greedy strategy. We
report the mean objective values across 10,000 test instances (i.e., “Obj.”), the percentage change
of the mean objective value of each model relative to the AM model (i.e. “Percentage Change”),
and the number of instances in the test set where the model’s solution achieves a better objective
value than the AM model’s solution (i.e. “Opt. Count”). In addition, the "Time" column in
Table 1 shows the average time required to solve each collection of 500 problem instances. Each
model is trained and tested on problem instances with the same number of customer and parking
nodes.

It can be found from Table 1 that, under the greedy strategy, AM-GA3M consistently out-
performs other models across three different instance sizes, achieving performance improvements
ranging from 1.10% to 10.18%. The performance gap widens as the problem scale increases.
In addition, AM-GA3M usually achieves the highest “Opt. Count”, except when compared to
AM-DRGM with RAM at N = 20. This might be attributed to the smaller problem size, where
the less complex architecture of AM-DRGM with RAM could be more efficient in exploring the
smaller solution space compared to AM-GA3M. Under the sample strategy, the AM-GA3M shows
the best overall performance. For N = 30 and N = 35, it achieves performance improvements
ranging from 1.95% to 11.02% and attains the highest “Opt. Count”. At N = 20, however, AM-
GA3M underperforms AM-DRGM with RAM in both “Obj.” and “Opt. Count”. This might be
attributed to the same reasons discussed above.

Table 1 – AM-GA3M vs Benchmarking Models

Model Instances with N = 20 Instances with N = 30 Instances with N = 35

Obj. Percentage Change Opt. Count Time Obj. Percentage Change Opt. Count Time Obj. Percentage Change Opt. Count Time

AM(greedy) 199.71 0.00% 0 0.22 294.61 0.00% 0 0.31 337.36 0.00% 0 0.34
AM with RAM (greedy) 198.05 -0.83% 5205 0.22 286.73 -2.67% 5659 0.31 340.04 0.79% 4742 0.34

AM-DRGM with RAM (greedy) 188.50 -5.61% 6531 0.44 278.92 -5.32% 5483 1.61 326.47 -3.23% 6297 5.10
AM-GA3M (greedy) 186.43 -6.65% 5784 0.49 268.77 -8.77% 7863 2.22 303.00 -10.18% 8515 5.97

AM (sample) 140.69 0.00% 0 150.43 229.13 0.00% 0 232.78 265.27 0.00% 0 274.72
AM with RAM (sample) 134.08 -4.70% 6205 151.97 221.28 -3.43% 7548 241.17 265.48 0.00% 4979 278.66

AM-DRGM with RAM (sample) 125.25 -10.97% 7888 296.07 207.94 -9.25% 9165 483.23 255.81 -3.57% 7076 1863.87
AM-GA3M (sample) 131.40 -6.60% 7511 297.09 203.89 -11.02% 9524 506.81 241.35 -9.02% 8781 2324.51

References
Dantzig, George B, & Ramser, John H. 1959. The truck dispatching problem. Management science, 6(1),

80–91.
Guo, Feng, Wei, Qu, Wang, Miao, Guo, Zhaoxia, & Wallace, Stein W. 2023. Deep attention models

with dimension-reduction and gate mechanisms for solving practical time-dependent vehicle routing
problems. Transportation research part E: logistics and transportation review, 173, 103095.

He, Ruining, Ravula, Anirudh, Kanagal, Bhargav, & Ainslie, Joshua. 2021. RealFormer: Transformer
Likes Residual Attention. Pages 929–943 of: Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021.

Kohar, Amit, Jakhar, Suresh Kumar, & Agarwal, Yogesh K. 2023. Strong cutting planes for the ca-
pacitated multi-pickup and delivery problem with time windows. Transportation Research Part B:
Methodological, 176, 102806.

Kool, Wouter, van Hoof, Herke, & Welling, Max. 2019. Attention, Learn to Solve Routing Problems! In:
International Conference on Learning Representations.

Mayerle, Sérgio Fernando, Chiroli, Daiane Maria De Genaro, de Figueiredo, João Neiva, & Rodrigues,
Hidelbrando Ferreira. 2020. The long-haul full-load vehicle routing and truck driver scheduling problem
with intermediate stops: An economic impact evaluation of Brazilian policy. Transportation Research
Part A: Policy and Practice, 140, 36–51.

Seyfi, Majid, Alinaghian, Mahdi, Ghorbani, Erfan, Çatay, Bülent, & Saeid Sabbagh, Mohammad. 2023.
Multi-Mode Hybrid Electric Vehicle Routing Problem. Transportation Research Part E: Logistics and
Transportation Review, 166, 102882.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan N, Kaiser,
Łukasz, & Polosukhin, Illia. 2017. Attention is all you need. Advances in Neural Information Processing
Systems.

TRISTAN XII Symposium Original abstract submittal


	 INTRODUCTION
	 PROBLEM STATEMENT
	 LEARNING MODEL
	 COMPUTATIONAL RESULTS
	 Experimental setting
	 Experimental results


