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1     INTRODUCTION 
 
The continuous network design problem (CNDP) determines the optimal link capacities in a network, 
considering a traffic assignment principle. CNDP is NP-hard (Gairing, et al., 2017). Hence, we can 
hardly obtain a globally optimal solution in polynomial time. This has prompted the development of 
approximation algorithms. Only a few of them, however, focus on the stochastic user equilibrium (SUE) 
traffic assignment though it is more general than the deterministic user equilibrium (DUE). Firstly, Da-
vis (1994) developed a gradient-based algorithm to obtain a local optimum. Secondly, Liu and Wang 
(2015) formulated an approximate mixed-integer linear programming (MILP) and solved it exactly. This 
method obtains a global optimal solution and is often applied to recent studies treating CNDP-like prob-
lems, e.g., Zhang et al. (2023). However, the number of integer variables increases when the network is 
large, or the approximation accuracy becomes high, and the calculation time increases exponentially.  

In this paper, we propose a novel algorithm for CNDP with the following advantages: 1) logit-based 
SUE can be adopted, 2) there is no need to enumerate all paths between an OD pair, 3) no integer 
variables are included, and 4) the final solution considers travel times without approximation. To achieve 
these, the algorithm solves a linear programming (LP) formulated by relaxing the original CNDP. After 
that, it shifts the solution to the LP toward the feasible region of CNDP. Instead of the above advantages, 
the SUE condition may not hold exactly in the final solution. 

The remainder of this paper is organized as follows: Section 2 formulates CNDP with SUE. Section 
3 proposes our algorithm illustrating LP to be solved at each iteration. Numerical calculations are con-
ducted to verify the proposed algorithm in Section 4. Section 5 concludes the paper. 
 

2     PROBLEM FORMULATION 
 
Here, we assume a network with node set 𝑁 and link set 𝐴. The sets of origin nodes and destination 
nodes are denoted as 𝑂(⊂ 𝑁) and 𝐷(⊂ 𝑁), respectively. We aim to minimize the total costs which con-
sists of the total travel cost and the total link enhancement cost. We use the BPR function as the link 
cost function. We adopt the link-based formulation of SUE proposed in Akamatsu (1996). Therefore, 
CNDP with SUE, termed [CNDP-SUE], is formulated as follows. 

min+(𝜌 ⋅ 𝑥! ⋅ 𝑡!(𝑥! , 𝑦!) + 𝑑!	 ⋅ 𝑦!)
!∈#

(1) 

with respect to 𝑥!$ , 𝑦!	∀𝑟 ∈ 𝑂, ∀𝑎 ∈ 𝐴, subject to 

𝑡!(𝑥! , 𝑦!) = 𝑡!% ⋅ ;1 + 𝛼! ⋅ =
𝑥!

𝐶! + 𝑦!
?
&
@ ∀𝑎 ∈ 𝐴(2) 

𝑦! ≥ 0 ∀𝑎 ∈ 𝐴(3) 
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𝑥! =+𝑥!$
$∈'

∀𝑎 ∈ 𝐴(4)
 

+𝑥!$ ⋅ 𝛾!,)
!∈#

= 𝑞$) ∀𝑟 ∈ 𝑂, ∀𝑠 ∈ 𝐷(5)
 

𝑥!$ ≥ 0, 𝜁!$ ≥ 0 ∀𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(6) 

𝑥!$ ⋅ 𝜁!$ =
1
𝜃
⋅ 𝑥!$ ⋅ 𝑙!$ ∀𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(7) 

where 
𝜁!$ = 𝑡! + + 𝛿!!

$) ⋅ 𝑡!!
!!∈#

− + 𝛿!!
$)! ⋅ 𝑡!!

!!∈#

∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(8)
 

𝑙!$ = ℎ!$ + + 𝛿!!
$) ⋅ ℎ!!

$

!!∈#

− + 𝛿!!
$)! ⋅ ℎ!!

$

!!∈#

∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(9)
 

ℎ!$ = − ln
𝑥!$

∑ 𝑥!!
$

!!∈# ⋅ 𝛾!!,)!
+ ∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(10) 

(1) is the objective function, as noted earlier. Its first term represents the total travel cost of link 𝑎 
calculated as the product of its traffic flow 𝑥!, its travel time 𝑡!, and the value of time 𝜌. The second 
term represents the enhancement cost of link 𝑎, which is calculated as the increase in capacity 𝑦! mul-
tiplied by the investment per unit capacity enhancement 𝑑!. A travel time of link 𝑎 is determined by the 
BPR function (2), where 𝑡!% is the free-flow travel time, 𝐶! is the original capacity, and 𝛼! is a parameter. 
(4) defines a link flow 𝑥!. 𝑥!$ denotes the flow on link 𝑎 departed from node 𝑟. Similarly, (5) defines an 
OD demand 𝑞$) . The constant 𝛾!,)  is defined as 𝛾!,)+ − 𝛾!,),  for  ∀(𝑖, 𝑗) = 𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑁, where 𝛾!,)+  
equals 1 if 𝑠 = 𝑗, and 0 otherwise, and 𝛾!,),  equals 1 if 𝑠 = 𝑖, and 0 otherwise. (6) and (7) represent the 
complementarity condition of SUE. 𝜃 is a parameter, and 𝜁!$ and 𝑙!$  are variables defined by (8)-(10). 
Here, 𝛿!$) equals 1 if link 𝑎 is included in the shortest path between the OD pair 𝑟, 𝑠 after the traffic 
assignment, and 0 otherwise. When the complementarity condition holds, all path costs between an OD 
pair 𝑟, 𝑠 are equal, where the path cost is calculated by assuming the cost of link 𝑎 is 𝑡! − ℎ!$/𝜃. 
 
3     SOLUTION ALGORITHM 
 
[CNDP-SUE] is nonlinear and nonconvex due to the link cost function (2) and the complementarity 
condition (7). To make it solvable, we formulate the following linearly relaxed CNDP, termed [LR-
CNDP] 0. 
[LR-CNDP] 0 

min+(𝜌 ⋅ (𝜇! + 𝜀- ⋅ 𝜈!) + 𝑑!	 ⋅ 𝑦!)
!∈#

(11) 

with respect to 𝑥!$ , 𝑦! , 𝜇! , 𝜈!	∀𝑟 ∈ 𝑂, ∀𝑎 ∈ 𝐴, subject to (3) – (6), 
(𝑥! , 𝑦! , 𝜇!) ∈ PL^Conv(Μ!)c ∀𝑎 ∈ 𝐴(12) 
(𝑥! , 𝑦! , 𝜈!) ∈ PL^Conv(Ν!)c ∀𝑎 ∈ 𝐴(13) 

where
Μ! = {(𝑥! , 𝑦! , 𝑧)|𝑧 ≥ (𝑥! − 𝜀-) ⋅ 𝑡!(𝑥! , 𝑦!)}, Ν! = {(𝑥! , 𝑦! , 𝑧)|𝑧 ≥ 𝑡!(𝑥! , 𝑦!)} ∀𝑎 ∈ 𝐴(14) 

𝜁!$ = 𝜈! + + 𝛿!!
$) ⋅ 𝜈!!

!!∈#

− + 𝛿!!
$)! ⋅ 𝜈!!

!!∈#

∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(15)
 

Here, 𝛿!$) is calculated based on the shortest path when 𝑡! = 𝑡!% for all 𝑎 ∈ 𝐴. Conv(⋅) is an operator 
which forms the convex hull of a given set, and PL(⋅) is an operator which forms the convex polytope 
obtained by piecewise linearizing a given convex set from the outside. The feasible region of 𝜇! is en-
closed by tangent planes of 𝑧 = (𝑥! − 𝜀-) ⋅ 𝑡!(𝑥! , 𝑦!) calculated at different points of (𝑥! , 𝑦!). In a 
similar way, the feasible region of 𝜈! is enclosed by tangent planes of 𝑡!(𝑥! , 𝑦!) calculated at different 
points of (𝑥! , 𝑦!). There two regions include nonconvex sets Μ! and Ν!, respectively. By minimizing 
the objective function (11), it is expected that the following two relationship, i.e., 𝜇! ≈ (𝑥! − 𝜀-) ⋅
𝑡!(𝑥! , 𝑦!)  and 𝜈! ≈ 𝑡!(𝑥! , 𝑦!) , hold. When a small value 𝜀- > 0  approaches zero, (𝑥! − 𝜀-) ⋅
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𝑡!(𝑥! , 𝑦!) = 𝑥! ⋅ 𝑡!(𝑥! , 𝑦!) is obtained. Therefore, Conv(Μ!) ≈ Μ!. Moreover, 𝜇! can be minimized 
without being affected by any other constraints than (12). Hence, 𝜇! ≈ (𝑥! − 𝜀-) ⋅ 𝑡!(𝑥! , 𝑦!) is always 
true by obtaining many tangent planes of (𝑥! − 𝜀-) ⋅ 𝑡!(𝑥! , 𝑦!) and by defining the convex polytope 
consisting of them as the feasible region of 𝜇!. In contrast, 𝜈! cannot be approximately calculated like 
𝜇! because the link cost function (2) is nonconvex. Moreover, we do not consider the complementarity 
condition (7) here. Therefore, there may exist some 𝑎 ∈ 𝐴 and 𝑟 ∈ 𝑂 that do not satisfy (7). 

To shift the infeasible solution of the original CNDP obtained above gradually to the feasible region, 
we will iteratively solve the following LP, termed [LR-CNDP] i+1, which is the problem solved at the 
(𝑖 + 1)th iteration. [LR-CNDP] i+1 is formulated using the solution to [LR-CNDP] i. The solution to [LR-
CNDP] i is denoted by the variable, that is addressed in the original problem and in (4), (8) and (9), to 
which the subscript of 𝑖 is added, i.e., 𝑥!,.$ , 𝑦!,. , 𝑥!,. , 𝜁!,.$ , 𝑙!,.$ . 
[LR-CNDP] i+1 

min+(𝜌 ⋅ (𝜇! + 𝜀- ⋅ 𝜈!) + 𝑑!	 ⋅ 𝑦!)
!∈#

+ 𝐸 ⋅+l𝜆!+ + 𝜆!, ++𝜆!$
$∈'

n
!∈#

(16) 

with respect to 𝑥!$ , 𝑦! , 𝜇! , 𝜈! , 𝜆!+, 𝜆!,, 𝜆!$ 	∀𝑟 ∈ 𝑂, ∀𝑎 ∈ 𝐴, subject to (3) – (6), (12), (13), 
𝑝!,. − ^1 − 𝜀/c

.+0
⋅ 𝐿!, − 𝜆!, ≤ 𝜈! ≤ 𝑝!,. + ^1 − 𝜀/c

.+0
⋅ 𝐿!+ + 𝜆!+ ∀𝑎 ∈ 𝐴(17) 

𝜆!+ ≥ 0, 𝜆!, ≥ 0, 𝜆!$ ≥ 0 ∀𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(18) 
if 𝑡$),. < 𝑡$)!,. 

𝜁!$ =

⎩
⎪
⎨

⎪
⎧−

𝜁!,.$

𝑥!,.$
⋅ 𝑥!$ + 2 ⋅ w

𝜁!,.$

𝑥!,.$
⋅ Φ!,.

$ + 𝜆!$ if	𝜁!,.$ >
𝑙!,.$

𝜃

−
𝜁!,.$

𝑥!,.$
⋅ 𝑥!$ + 2 ⋅ w

𝜁!,.$

𝑥!,.$
⋅ Φ!,.

$ − 𝜆!$ if	𝜁!,.$ <
𝑙!,.$

𝜃

∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(19)
 

𝑥!$ ≥ 𝜀1 ∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(20) 
otherwise 

𝑥!$ = 0	 ∀(𝑠, 𝑠*) = 𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(21) 
where

𝑝!,. =
23"
21"

z
1",$,4",$

⋅ ^𝑥! − 𝑥!,.c +
23"
24"

z
1",$,4",$

⋅ ^𝑦! − 𝑦!,.c + 𝑡!^𝑥!,. , 𝑦!,.c ∀𝑎 ∈ 𝐴(22) 

Φ!,.
$ = (1 − 𝜀5) ⋅ 𝑥!,.$ ⋅ 𝜁!,.$ + 𝜀5 ⋅ 𝑥!,.$ ⋅

𝑙!,.$

𝜃
∀𝑎 ∈ 𝐴, ∀𝑟 ∈ 𝑂(23) 

𝜈! in (17) approximately represents the link cost function (2). (22) represents the tangent plane of the 
link cost function at (𝑥! , 𝑦!) = ^𝑥!,. , 𝑦!,.c. Positive constants 𝐿!+ and 𝐿!, are introduced to (17) to ensure 
that the feasible region of 𝜈! narrows down to (22) as 𝑖 increases, where 𝜀/ > 0 is a small positive con-
stant. 𝜆!+, 𝜆!, and 𝜆!$  are introduced to respective constraints to make the solution feasible, and the sum 
of them is minimized by (16) accompanied by a positive large coefficient 𝐸. By (19), a solution that 
approximately satisfies the complementarity condition (7) can be obtained. (23) denotes the internally 
dividing point of 𝑥!,.$ ⋅ 𝜁!,.$  and 𝑥!,.$ ⋅ 𝑙!,.$ /𝜃 in the ratio of 𝜀5 to 1 − 𝜀5. When 𝜀5 in (23) equals zero, the 
first and second terms on the right-hand side of (19) represent the tangent plane of 𝑥!$ ⋅ 𝜁!$ = 	𝑥!,.$ ⋅ 𝜁!,.$  
calculated at (𝑥!$ , 𝜁!$) = ^𝑥!,.$ , 𝜁!,.$ c. By introducing a small positive value 𝜀5 > 0, ^𝑥!,.+0$ , 𝜁!,.+0$ c shifts 
to 𝑥!$ ⋅ 𝜁!$ = 𝑥!,.$ ⋅ 𝑙!,.$ /𝜃. When 𝑥!,.$  in (10) equals zero, however, ln 0 diverges and therefore 𝑙!,.$  in (9) 
cannot be defined. Due to this, we need to address only the paths that carry flows. For this, we applied 
the criteria employed in Dial’s algorithm (Dial, 1971). Regarding link 𝑎 = (𝑠, 𝑠*) and node 𝑟, when the 
shortest travel time between the OD pair 𝑟, 𝑠 obtained at the 𝑖th iteration, denoted by 𝑡$),., is shorter than 
𝑡$)!,., both (19) and (20) hold where 𝜀1 > 0 is a small positive constant, otherwise (21) holds.  

Note that 𝛿!$) must be recalculated if necessary. To determine whether to recalculate or not, we use 
the criterion Φ!,.

$ < 0. This holds when 𝑙!,.$  is a negative number with a large absolute value and 𝜁!,.$  
takes a value which is close to zero. In such a case, the path that contains link 𝑎 has almost the same 
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travel time as the original shortest path and carries much flow. In the case of SUE assignment, the path 
with the largest flow can be the shortest path. Thus, this criterion makes sense. 
 
4     NUMERICAL CALCULATION 
 
Firstly, we solved CNDP with UE by setting 𝜃 → ∞ and verified our algorithm by comparing it with 
the results shown in Wang and Lo (2010). They demonstrated that an exact solution to the CNDP can 
be obtained by solving the MILP, which is an approximate problem of the CNDP.  We used totally the 
same instant as theirs (16-arc network, two scenarios of OD demand). Traffic flows satisfying the com-
plementarity condition (7) could finally be obtained with errors below 10,& in 4.55 seconds for Scenario 
I and in 3.22 seconds for Scenario II. Table 1 presents the obtained objective values. Our algorithm 
provided almost the same solution in a short time as the exact one. 

Secondly, we solved CNDP with SUE by changing the value of 𝜃 for Scenario II of the above prob-
lem. It took about 2 minutes to solve each problem. Figure 1 shows the relationship between the value 
of 𝜃 and the value of the objective function (16). The blue dot in the figure shows that the solution that 
holds the complementary condition (7) was obtained. The orange dots show that such solutions were not 
obtained. The complementary condition does not hold in some cases where the value of 𝜃 approaches 
zero. This is because the target of convergence 𝑥!,.$ ⋅ 𝑙!,.$ /𝜃 fluctuates significantly between iterations 
even when solution 𝑥!$ , 𝜁!$ changes little. 

 
Table 1 – Comparison of our algorithm  

and the previous one 
Scenario Our algorithm Wang and Lo (2010) 

I 199.64 199.63 
II 522.62 522.59 

 
 
5     CONCLUSION 
 
We have proposed a fast solution algorithm for CNDP with SUE. This algorithm is not exact, and the 
SUE condition may not exactly hold in the final solution. However, numerical calculations indicated 
that an accurate assignment was highly likely to succeed when 𝜃 was large, allowing us to obtain a 
solution very close to the optimal one in such a case. Developing an algorithm that exactly satisfies the 
SUE condition even if 𝜃 is small reminds a future challenge. 
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Figure 1 – Result of [CNDP-SUE] 
 


