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1 INTRODUCTION

This study addresses the problem of optimizing UAV search and routing planning (SRP) to
maximize the number of casualties detected in a disaster-affected area within a limited mission
duration. We begin by assuming that the number of casualties in different regions is known. The
challenge involves determining which regions to visit, in what order, and how much time to spend
searching in each region to collect as much expected information about the casualties. The scope
of the problem is then extended by incorporating additional real-world complexities, including
uncertainties in the number of casualties and coordination of multiple UAVs. The impact of
these factors is further explored through a case study based on the major 2023 Turkey-Syria
earthquake in which approximately 80,000 people died.

2 METHODOLOGY

Let Ci denote the number of casualties in the region i. Then Ri, the number of casualties found
in the region i given a search time of Si, can be calculated according to equation (1), where
λ > 0 is a UAV detection rate parameter. Figure 1 shows the plot associated with this equation.

Ri = Ci(1− e−λSi) (1)

Figure 1 – Model for detection of casualties.
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It can be seen that equation (1) is increasing at a decreasing rate (concave), reflecting the
increasing difficulty of detecting an additional casualty in the target region with the elapsed
search time. This exponential form is commonly used in the search literature (e.g., Nie et al.
(2007)).

To find the optimal solution to the deterministic SRP problem with a single UAV, an exact
solution approach has been developed. We derive an equation for the optimal search times for
regions along a given route in polynomial time. However, the routing portion of this method
is based on brute force, which requires an exponential number of calculations. To solve larger
instances, a clustering-based heuristic is developed; it first finds which clusters to visit and in
what order, along with the search time in each cluster. The framework is then reapplied to the
regions within a cluster. The final step is to determine the entry and exit points of the group.

2.1 Deterministic SRP

We develop a Mixed-Integer Nonlinear Programming (MINLP) model that aims to maximize the
total number of casualties detected over all regions. In order to linearize the objective function,
each continuous variable Si is discretized so that it can only take a finite number of possible values,
known as its breakpoints. Hence, the resulting Mixed-Integer Linear Programming (MILP)
formulation is an inner approximation of the original problem. We create the set of breakpoints
using a geometric progression of a variable ratio such that the difference between the number of
detected casualties associated with consecutive breakpoints has a constant value. This approach
significantly improves the performance of the approximate MILP in comparison to the case where
the search time range is simply divided into equal intervals.

2.2 Stochastic SRP

To model the non-deterministic number of casualties, we consider that the region i has Ci

casualties, where Ci is a uniform Random Variable (RV) within the range [Cmin
i , Cmax

i ] with
Probability Density Function (PDF) f(Ci) = 1

Cmax
i −Cmin

i
and mean E(Ci) =

Cmin
i +Cmax

i
2 . We

also assume that the number of casualties in different regions is mutually independent.
Let Ct

i denote the number of casualties found in the region i after spending a search time of
duration t in this region. Given Ci, Ct

i is a binomial RV with parameters n = Ci, p = 1− e−λt.
Equation (2) calculates the probability of finding k casualties in region i after spending a search
time of duration t in this region.

P (Ct
i = k) =
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i
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P (Ct
i = k|Ci).f(Ci) dCi

=
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)
pk(1− p)n−k.f(Ci) dCi (2)

The expected value for Ct
i is calculated as:

E(Ct
i ) = E(E(Ct

i |Ci)) = E(np) = E(Ci)p (3)

The variance for the number of casualties in a region equals to σ2
Ct

i
= E(Ct

i
2
)−E(Ct

i )
2, where

E(Ct
i
2|Ci) = σ2

Ct
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+ E(Ct
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2

= np(1− p) + n2p2 (4)
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2
) =
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i
2|Ci).f(Ci) dCi (5)
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The calculated means and variances are fed into the deterministic model to find an initial
SRP. The means define the number of casualties in the regions, and the variances are used by a
constraint that limits the variance for the total number of casualties in the regions along a given
route.

Let path P : 0 − 1 − 2 − 0 with search times S1 and S2 represent an initial solution. The
UAV starts the mission by visiting region 1. Based on Figure 2, after spending some discovery
time t∗1 < S1 in the region, comparing the expected number of casualties detected E(R) with
the actual number of casualties detected R, we have a more accurate estimate of the number of
casualties C1 and can update the initial solution accordingly. This procedure is repeated each
time the UAV flies to a new region.

Figure 2 – E(R) vs R.

It should be noted that E(Ct
i ) and σ2

Ct
i

not only contribute to finding the initial solution
but can also be used to calculate the appropriate discovery times. Equation (6) determines the
minimum t∗ for a region such that the gap between the estimated and the actual number of
casualties in the region is ensured to be below a certain threshold α.

t∗ =
1

λ
.ln(

a+ d+ x− c− b

x+ d− b
) (6)
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2
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3
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2 )2

3 RESULTS

We performed a series of computational experiments to evaluate the efficiency of the exact
method, the approximate MILP, and the clustering heuristic. For this purpose, 10 randomly
generated test instances of size 10 are solved using the exact method, the MILP formulation
with 5, 10, and 15 breakpoints, and the heuristic algorithm with 2, 3, and 5 clusters. In these
cases, search regions are uniformly distributed across a plane with x and y coordinates ranging
from 0 to 100. Figure 3 depicts the efficiency of the proposed solution methods for the generated
test instances. As expected, using more breakpoints results in better solutions and faster compu-
tational times for the MILP problem. In terms of OFV, the improvements are often negligible;
however, there are more meaningful improvements as well (e.g., a gap of 0. 23% vs. 3. 43%
between MILP_5 and MILP_15 in test instances 9 and 5, respectively). It can be seen that the
MILP model is much slower than the exact approach with the average computational times of
281.81, 297.09, and 316.12 seconds for MILP_5, 10, and 15, respectively vs. the average compu-
tational time of 19.72 seconds for the exact method. Compared to the other solution methods,
more fluctuations appear in the computational time of the MILP model across different test
instances of the same size.
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The heuristic algorithm is the fastest method that can provide a solution to all instances of
problems in less than a second. According to Figure 3a, the number of clusters can significantly
affect the quality of the heuristic solution with a minimum gap of 0. 31% and the maximum gap
of 30.23% between the corresponding OFVs. However, this parameter does not have a consistent
effect on heuristic performance, as its increase might result in an improvement or decline in OFV.
We also conduct an experiment that shows variability in the heuristic’s performance depending on
the distribution of target regions. Solving ten instances each with different region distributions,
we find that while the best gap always rests at zero, the number of optimally solved instances,
the worst gap, and the average gap considerably improve as the distribution of the target regions
moves from entirely uniform to highly clustered. Finally, to determine the time limits of the
proposed solution methods, problems of different sizes are solved. According to the results, the
exact method can solve up to 14 regions optimally in a reasonable time, whereas the MILP model
struggles with instances with more than 10 regions. For the heuristic algorithm, applying the
exact approach in parallel within clusters enables it to solve problems of 200 size in less than
three hours.

The developed methods have been applied to a case study based on the Turkey-Syria 2023
earthquake, using available data on earthquake characteristics and casualties.

(a) OFV (b) Computational time

Figure 3 – Performance of different solution methods for instances of the size 10.

4 CONTRIBUTION AND NEXT STEPS

Our contributions include: (1) Proposing a MILP model to address the UAV SRP problem
with discrete search times, (2) Developing an exact approach to solve the UAV SRP problem
with continuous search times, (3) Adapting a clustering heuristic method to solve large-sized
problem instances, (4) Extending the scope of the problem by incorporating additional real-world
complexities, including uncertainties in the number of casualties and coordination of multiple
UAVs, and (5) Presenting a realistic case study to show the successful implementation of this
work in humanitarian contexts.

In the next steps of this work, first we need to implement extensive computational testings
on the stochastic SRP discussed in Section 2.2. We will also study collaborative stochastic SRPs.
This circumstance requires iterative use of the approach discussed in Section 2.2, in that there
exists an interplay between new realizations after a certain discovery period, based on which the
current solution can be updated.
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