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1 INTRODUCTION

Traffic Assignment Problem (TAP) aims to predict the traffic flows on a given road network and
demand profile. Adopting the equilibrium concept from game theory, the solution to TAP is
defined on a traffic flow pattern such that no one has incentives to further change their routing
strategies (Sheffi, 1985). The TAP models can be categorized in different ways, while two common
classifications are i) static vs dynamic: whether time-dependent traffic dynamics are considered;
and ii) deterministic vs stochastic: whether route choice contains randomness or uncertainty.
This study proposes a novel dynamic and stochastic TAP model, where each vehicle’s routing
decision is characterized by a Markov decision process (MDP). Accordingly, the traffic dynamics
are Markovian while the stochastic routing behaviors are described by a state-dependent policy.

A series of Markovian TAP models have been proposed in the literature, though mostly from
the perspective of route choice modeling (e.g., Bell, 1995, Akamatsu, 1997, Baillon & Cominetti,
2008, Oyama et al., 2022). Specifically, these models consider route choice as a sequence of
link choices and thus naturally fits it into the MDP framework, where state is the current
node, action refers to the next link, and the link choice probabilities are given by a presumed
discrete choice model, e.g., multinomial logit (MNL) model as per Akamatsu (1997). The link
choice probabilities, combined with the demand vector, yield expected link flows, which, in turn,
determine link utilities and complete the feedback loop. The existing Markovian TAP models,
however, are restricted to a predefined policy (e.g., MNL) and deterministic state transitions
(e.g., the agent surely moves to the end node of the selected link). The model proposed in this
study is free of these constraints and thus provides a more flexible modeling framework.

Our proposed model, namely, population Markov potential game (PMPG), stands at the
intersection of three classic games: population game, potential game, and Markov game. Hence,
it can be seen as an extension of the population potential game (Sandholm, 2001) to Markov
dynamics, a special case of Markov population games (Elokda et al., 2024) with a potential func-
tion, or a special case of Markov potential game (Leonardos et al., 2021) over a large population
of agents. Nevertheless, the proposed model has a wide range of applications in transportation
research thanks to its ideal analytical properties and efficient solution approach. Due to the page
limit, we only present one example, while more applications will be included in the full paper.
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2 POPULATION MARKOV POTENTIAL GAME

2.1 Model setup

Consider a Markov game defined on G = (N ,S,A, R, P, γ, ρ) with a finite horizon T , where
• N is the set of homogeneous agents with population size N = |N |.

• S is the finite state space and ∆(S) refers to the probability simplex over S. We use sn,t
to denote the state of agent n ∈ N at time t ∈ T := {0, . . . , T − 1} and s−n,t = (sm,t)m ̸=n

to denote the joint states of all other agents.

• A is the finite action space. Similarly, ∆(A) denotes the probability simplex, and an,t and
a−n,t refer to actions of n and other agents, respectively.

• P : SN ×AN × S → [0, 1] is the state transition, for which P (sn,t′ |sn,t, an,t, s−n,t,a−n,t) is
the probability of agent n transitioning from sn,t to sn,t′ by taking action an,t given other
agents’ states s−n,t and actions a−n,t.

• R : SN ×AN → R is the expected reward at each time (or stage payoff) derived from the
immediate reward r(sn,t′ |sn,t, an,t) that is more commonly used in MDP

R(sn,t, an,t, s−n,t,a−n,t) =
∑

sn,t′∈S
r(sn,t′ |sn,t, an,t)P (sn,t′ |sn,t, an,t, s−n,t,a−n,t) (1)

• γ ∈ (0, 1] is the discount factor.

• ρ is the initial state distribution.

Every agent n follows a policy πn = (πn,t)t∈T , where πn,t(s, a) describes the probability of
choosing action a ∈ A at state s ∈ S. Accordingly, we denote π−n = (πm)n̸=m as the joint policy
of all agents other than n. Each agent aims to maximize the expected total discounted payoff
function given all other agents’ policies:

Vn(πn, π−n) = E

[
T∑
t=0

γtR(sn,t, an,t, s−n,t,a−n,t)

]
, (2)

with sm,0 ∼ ρ, am,t ∼ πm,t(sm,t, ·), sm,t′ ∼ P (·|sm,t, am,t, s−m,t,a−m,t),∀m ∈ N .

2.2 Definitions and properties

When the number of agents is sufficiently large, the population can be treated as a continuum.
The game then becomes a Markov population game (Elokda et al., 2024), and the distribution
of agent states is summarized by the population state distribution µ = (µt)t∈T , where µt :
S → ∆(S) is the population state distribution at time t. Besides, the joint state and action
(s−n,t,a−n,t) in Eq. (1) are replaced by (µt, πt) and the following assumption holds.

Assumption 1. With a large population, the state transition is insensitive to individual policy

lim
N→∞

∂P (s′|s, a, µt, πt)

∂πn,t(s, a)
= 0, ∀s′ ∈ S, (3)

and the dynamics of population state distribution are determined by aggregate actions

µt(s
′) =

1

N

∑
τ<t

∑
s∈S

∑
a∈A

P (s′|s, a, µτ , πτ )µτ (s)
∑
n∈N

πn,τ (s, a) (4)

In this study, we define a special case of Markov population games that intersects with Markov
potential games (MPG) (Macua et al., 2018, Leonardos et al., 2021).

TRISTAN XII Symposium Original abstract submittal



3

Definition 1. A Markov population game is a population Markov potential game (PMPG) if
there exists a potential function Φ(µ, π) such that

∂Φ(µ, π)

∂πn,t(s, a)
= γtµt(s)R(s, a, µt, πt), ∀n ∈ N , s ∈ S, a ∈ A. (5)

Definition 2. A joint policy π∗ = (π∗
n)n∈N is a Nash policy if for every agent n, it holds that

Vn(π
∗
n, π

∗
−n) ≥ Vn(πn, π

∗
−n), ∀πn ∈ Π, (6)

where Π is the feasible set of individual policies.

We then establish the existence of Nash policy in PMPG and the equivalence to an optimiza-
tion problem.
Proposition 1. For a PMPG with potential function Φ(µ, π) and state dynamics f(µ, π) = 0,
there always exists a Nash policy π∗ that also solves the optimization problem:

max
π,µ

Φ(µ, π), s.t. f(µ, π) = 0, πn ∈ Π. (7)

We further derive a sufficient condition for a Markov population game to be a PMPG.
Proposition 2. A Markov population game is a PMPG if any two agents m,n ∈ N , the sym-
metric condition holds, that is, ∀t ∈ T , sm, sn ∈ S, am, an ∈ A,

∂µt(sm)R(sm, am, µt, πt)

∂πn,t(sn, an)
=

∂µt(sn)R(sn, an, µt, πt)

∂πm,t(sm, am)
. (8)

2.3 Solution algorithm

Due to Proposition 1, we develop a policy gradient method to solve the equilibrium of PMPG:

• Forward loading: Compute population state distribution µ using the current policy π.

• Policy update: Evaluate the gradient ∇πnΦ(µ, π) =
(

∂Φ(µ,π)
∂πn,t(s,a)

)
t∈T ,s∈S,a∈A

as per Eq. (5)

and update policy of representative agent according to

πn ← ProjΠ

[
πn + α∇πnΦ(µ, π)

]
, (9)

where α is the step-size and ProjΠ[·] denotes a projection on to Π.

As will be shown in the numerical experiments, the above algorithm is much more efficient than
standard value iterations for Markov game (e.g., Zhang et al., 2023).

3 APPLICATION

In this section, we present an example of PMPG in ride-hailing. Particularly, we show the
ride-hailing vehicle routing game (RIVER) proposed in Zhang et al. (2023) is a PMPG and
demonstrates the efficiency of our proposed solution algorithm.

RIVER considers a fleet of N ride-hailing vehicles moving across zones Z over T discrete
time intervals to search and serve passengers. At the beginning of each time interval t, vacant
vehicles in zone i ∈ Z can move to a neighboring zone j ∈ Zi for passenger search. The aggregate
demand-supply interactions in each zone lead to a meeting probability mt,j , i.e., how likely a
vehicle pick up a passenger in zone j by the end of interval t. Accordingly, the sequential cruising
decisions of each vehicle are modeled as an MDP with the state defined as the current zone and
action as the next search zone. For vehicle n with sn,t ∈ Zj , an,t = j, the expected stage payoff
is R(sn,t, an,t, µt, πt) = mt,j p̄t,j , where p̄t,j is the average trip fare from zone j at time t.
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Zhang et al. (2023) derived mt,j as a continuously differentiable function of the demand flow
qt,j and vacant vehicle flow yt,j , and the latter is computed as yt,j =

∑
i∈Zj

µt(i)
∑

n∈N πn,t(i, j).
Under this setting, we prove RIVER is a PMPG using Proposition 2. Consider two agents with
sm = i, am = j and sn = k, an = l. If they choose the same search zone (i.e., j = l), then

∂µt(sm)R(sm, am, µt, πt)

∂πn,t(sn, an)
=

∂µt(sn)R(sn, an, µt, πt)

∂πm,t(sm, am)
=

∂mt,j

∂yt,j
µt(i)µt(k)p̄t,j . (10)

Otherwise, their rewards are independent and the partial derivatives are simply zero.
Furthermore, we show Assumption 1 holds and construct and prove the potential function as

Φ(µ, π) =
∑
t∈T

∑
j∈Z

γt
∫ ∑

i∈Zj
µt(i)

∑
n∈N πn,t(i,j)

0
mt,j(y)p̄t,jdy. (11)

See Zhang et al. (2023) for the specification of population state dynamics.
Figure 1 illustrates the convergence of two solution algorithms on a simplified scenario with

seven zones, 12 time intervals, and 500 drivers. It can be clearly observed that policy gradient
achieves a much faster convergence compared to value iterations.

Figure 1 – Convergence of solution algorithms.
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