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1 INTRODUCTION

Ridepooling systems have gathered attention from researchers and industry in recent years. They
could combine the attractiveness of ridehailing, being flexible on routes and on-demand, and the
efficiency of public transport, by having many passengers sharing the vehicle simultaneously.

Previous studies indicate that door-to-door services introduce inefficiencies in ridepooling
(Gurumurthy & Kockelman, 2022, Fielbaum et al., 2021, Fielbaum, 2022). The main reason is
that driving door-to-door often implies entering slow streets or following long detours, which
can be avoided if the users could walk even short distances. On the other hand, even the door-
to-door version of ridepooling can be unreliable to users. As the shape of a route depends on
circumstantial co-travellers, it is hard for users to accurately anticipate the conditions of their
trip because they can get updated while a trip is being executed (Zhang et al., 2024, Fielbaum
& Alonso-Mora, 2020). When the system requires the users to walk to/from different locations
each time, another layer of unreliability is introduced, potentially hindering ridepooling’s broader
adoption. For instance, an experiment reported by Martin et al. (2021) in collaboration with
Lyft, showed that the adoption of ridepooling might be tripled if the pickup and dropoff points
were informed before the user decides whether to accept a trip or not, as opposed to accepting
a cloud of potential points.

Therefore, a natural question emerges: Is it possible to abandon the door-to-door scheme to
increase the system’s efficiency without making it more unpredictable? Specifically, in this paper,
we study the problem of selecting a subset of locations where the pickup and dropoff (PUDO)
can occur: the Shared Ridepooling Stops SRS. Crucially, this subset is decided beforehand, and
then every user chooses their PUDO points from there.

In the traditional public transport nomenclature, this can be seen as a tactical decision, i.e.,
that could be changed on a monthly or yearly basis, but not every day. Moreover, we aim to
develop methods based solely on the street network, independent of the characteristics of the
ridepooling system, which may vary significantly over time (peak vs off-peak hours, week vs
weekends, sunny vs rainy days, and so on); this is similar to the location of bus stops in a public
transport network, whose position is rarely modified even if the routes or the demand changes.

2 METHODS

2.1 Problem statement

We consider an on-demand ridepooling system that is not door-to-door. Instead, the system offers
a set of potential places where the vehicles can stop to pick up or drop off a passenger, called the
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Shared Ridepooling Stops (SRS). From the users’ perspective, when they select their trip, they
must select one SRS for the pickup and another for the dropoff. Thus, the methods to assign and
route door-to-door ridepooling (e.g. Alonso-Mora et al. (2017), Ramezani & Valadkhani (2023))
can be applied directly. The focus of this paper is how to select the set of SRS.

Preliminaries, decision variables, and constraints: We consider a strongly directed graph
G = (N,E). Each arc e ∈ E is characterized by a distance de and a vehicle-time te. We assume
that in every leg passengers cannot walk a distance longer than DM . We must select a subset
P ⊆ N , where nodes u ∈ P are the SRS. The subset P must fulfil that ∀u1 ∈ N, ∃u2 ∈ P , such
that d(u1, u2) ≤ DM , i.e., every node is at walking distance from P . We will consider the service
rate of the system as our main KPI, i.e., the percentage of requests that get served (given hard
waiting and in-vehicle time windows) and are not rejected. In the full version of the paper, other
KPIs such as vehicles-kilometres-travelled and total travelling times are reported.

We face a challenging scheme. On the one hand, we aim for a method that takes the graph
as its only input; on the other hand, the evaluation of P will depend on the fleet, the demand,
the users’ decisions about how to select their preferred SRS, and the routing-and-assignment
mechanism. To deal with this puzzle, we will proceed as follows: In section 2.2, we propose
methods that receive the graph G as input, and the set of SRS as output. Then, we test all these
methods considering different fleets, demand patterns, and users’ choices, utilizing the state-of-
the-art routing and assignment method by Alonso-Mora et al. (2017). In this extended abstract,
we only show results for one scenario.

2.2 Solution method

Our method to build the set of SRS is based on determining a hierarchy for the nodes. That is, we
will assign each node u a distinct ranking ru ∈ {1, ..., |N |}. We consider three ranking methods:
(i) The contraction hierarchy, as defined by (Geisberger et al., 2008), where intuitively the
hierarchy of a node is greater if it belongs to more shortest paths; (ii) The convex hierarchy,
where nodes are ranked according to the value of V A(u) = α ·D(u) + (1− α) · V (u), with D(u)
its degree (number of neighbours), and V (u) the average speed of the surrounding arcs; and (iii)
a random hierarchy to be used as a benchmark.

Once the hierarchy has been decided, we build P as follows. We consider the nodes in order
according to their ranking. For each of them, if it has not been covered yet, we add it to the list.
A node is covered if another node, closer than DM , has been previously added.

3 NUMERICAL SIMULATIONS

3.1 The scenario

We run simulations over a network representing the commune of Providencia in Santiago, Chile,
consisting of 2,035 nodes. We generate a synthetic set of 1,000 requests, and use DM = 0.45
kms, to be served by 100 vehicles of capacity 3. We assume that each time a vehicle needs to
stop, it loses 60 seconds in total. Figure 1 shows the full network and the resulting 94 SRS when
applying the contraction hierarchy.

3.2 The assignment method

The assignment between vehicles and users, together with the vehicles’ routes, are decided fol-
lowing the well-known method by Alonso-Mora et al. (2017). This method requires receiving
the pickup and drop-off point of each request1, but they are not uniquely determined, as every

1It also requires a number of parameters, for which we use similar values as the original paper. The exact
parameters are described in the full version of this paper.

TRISTAN XII Symposium Original abstract submittal



3

Figure 1 – The full Providencia network (black), and the resulting SRS (red).

user might have several SRS at walking distance. Which SRS to consider is in fact a behavioural
question. We consider two scenarios for this: (i) The min-walk scenario, where every user se-
lects the SRS that minimises the distance between origin and pickup (and the same for the
destination), and (ii) the min-time scenario, where every user r select u1, u2 SRS to minimise
ta(or, u1) + tv(u1, u2) + ta(u2, dr), where ta represents the walking times, tv the in-vehicle time,
and or and dr are the exact origin and destination.

3.3 Results

Every simulation takes a few minutes. Results are summarised in Figure 2, where we show the
service rate for the different hierarchies, varying α in the case of the convex hierarchy. The results
of the convex and contraction hierarchies (CHR) are similar and much better than the door-to-
door alternative (DtD). This is a notable result, as to avoid detours, we do not need to optimise
the PUDO points dynamically - instead, an offline decision, where users can select which SRS to
use, suffices. The result is robust with respect to how do users make their selection (min-walk
or min-time), although results are obviously better when they minimise their in-vehicle time, as
vehicles are occupied for shorter periods; the longer the DM , the greater the improvement.

Figure 2 – Results of the simulations.

Using the SRS with any reasonable hierarchy is always better than the random hierarchy,
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but remarkably, the latter also outperforms the door-to-door service. This suggests that using
SRS benefits the system in two different ways: first, by keeping the cars in the most useful arcs
(achieved with the good hierarchies), and second, by the very fact of concentrating the users in
a few places to stop. The reason for this is that vehicles stop less often. We measure this by
computing the number of coincidences, i.e., how many times two users were served in the same
stop. Results are summarised in Table 1, with DM = 0.45 km. As evident, the random hierarchy
achieves a much greater number of coincidences than door to door, which ultimately increases
the system’s efficiency and reduces the rejection rate.

Table 1 – Number of coincidences depending on the hierarchy.

Hierarchy Number of coincidences - Min walk Number of coincidences - Min time
CHR 166 167

Random 165 159
Door to door 18 18

4 CONCLUSION

We have proposed methods to select SRS that are decided offline, from which ridepooling users
can choose their preferred PUDO points. Our results show a great improvement over a door-to-
door alternative, showing that it is possible to unleash the potential of walking in ridepooling,
without making the system less predictable for the users. A close look at the results reveals that
walking benefits the system not only by avoiding detours but also by occasionally having users
served at the same stop. The methods and the high-level conclusions bear the relevant potential
to make on-demand ridepooling and on-demand public transport more widespread.
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