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1 RESEARCH GOAL

One major operational question faced by ride-sourcing drivers is where to go for the next passen-
ger. Efficient relocation balances supply and demand, so that passengers can be served promptly
and drivers have higher proportions of revenue-earning miles. The current business model of
Transportation Network Companies (TNCs) does not permit direct fleet control since drivers
are independent contractors, therefore a fleet-level relocation study in the literature generally
assumes a fleet of automated vehicles or does not discuss the application context specifically.
The current study is motivated by another possible application context, where drivers organize
as a cooperative (Conger, 2021) or unionize (Treffeisen, 2024), whose goal does not fully align
with that of the TNC’s. The TNC generates revenue from commissions charged to all drivers
yet do not bear drivers’ vehicle ownership or operating costs. It could be argued that drivers are
more likely to comply with routing guidance from an entity that represents drivers. Furthermore,
the inchoate organization might not possess enough data and be better off with a model-based
approach.

We thus take a model-based approach and formulate the optimal vacant ride-sourcing vehi-
cle routing problem for a fleet as an average-reward maximizing, infinite-horizon semi-Markov
Decision Process (SMDP) problem in a physical transportation network such that the routing
policy is directly operational at a turn-by-turn level. Major inputs are the demand rate and
background supply (vacant vehicles outside of the fleet in question) rate at each node, which
can come from direct observations or other models. There is not a time stamp in the state
and the optimization is performed on a steady-state basis for each separate time period, yet the
evaluation of the routing policies is done in a time-dependent setting. The method is intended
as an offline planning tool to provide initial guidance to drivers based on long-term demand and
supply patterns.

2 CONTRIBUTION

Table 1 provides taxonomy of the literature along three dimensions with selected studies. The
first dimension concerns whether system dynamics are modeled (model-based) or not (model-
free) in the optimization, and a third hybrid category that combines the previous two (not shown
due to space limit). The second dimension concerns whether limited or more elaborate spatial
stochastic processes in system dynamics are accounted for. In a model-based setting, the former
is typically associated with a lack of spatial friction in passenger-vehicle matching, e.g., the point
queue at a station (Zhang & Pavone, 2016), and the omission of matching possibilities along
the way of moving to the assigned relocation destination (Braverman et al., 2019), while the
latter group considers these spatial uncertainties from the viewpoint of vehicle agents. In the
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Spatial Stochastic Processes
Limited More Elaborate

Dynamics Zone-Based Network-Based Zone-Based Network-Based
Model-
Based

Zhang & Pavone
(2016)

Iglesias et al.
(2019)

Zhang et al. (2023) This study

Model-Free Mao et al. (2020) Lin et al. (2018) Yu & Hu (2022)

Table 1 – Taxonomy of Related Work with Selected Studies

model-free setting, the former is associated with a single fleet manager agent, which greatly
simplifies the learning, while the latter group needs to deal with multiple agents via multi-agent
reinforcement learning (RL), mean-field RL or ad hoc adjustments to single vehicle agent based
learning. The third dimension concerns the elementary spatial units: zone-based vs. network-
based. A network-based method fully considers the spatial connectivity constraints and directly
generates turn-by-turn operational policies, in contrast to the ad hoc adjustments needed in
zone-based methods.

This study contributes by developing a model-based approach to vacant vehicle routing of
a ride-sourcing fleet in a physical transportation network that accounts for spatial friction and
sequential matching. A proof is provided for the existence and uniqueness of a stationary distribu-
tion for the infinite-horizon SMDP with endogenous state transition probabilities. Computational
tests in a large network with around 30,000 links demonstrate its real-world applicability.

3 METHODOLOGY

A fleet of M vehicles travel in a network G = (N ,A). N is the set of nodes and A the set of
links. Vacant vehicles’ routing decisions are modeled as an infinite-horizon SMDP. An SMDP
behaves like an MDP in terms of the state to state transition given an action, and the difference
is that the process stays at a state for a certain amount of time, the so-called holding time,
with a probabilistic distribution depending on the action and next state, before a transition.
The corresponding MDP where the holding time is ignored is called the embedded MDP of
the SMDP. Hired vehicles’ routing decisions are not explicitly modeled and assumed to follow
shortest paths. In the remainder, a vehicle is by default vacant.

The state of a vehicle, s ∈ A, is the link it is located at, and thus S = A. All vehicles follow a
uniform, probabilistic policy. A probabilistic policy avoids crowding and allows for optimization
over the spreading of vehicles at each node.

The action set for state s is the forward star A+(s). A parameterized probabilistic policy, πϑ,
defines π(a|s, ϑ), the probability that action a is chosen given parameters ϑ = {θ1, θ2, . . .} with
an exogenous feature vector. Example features include passenger arrival rate and background
vacant taxi density, and should be customized case by case.

Let ms be the probability that a vehicle is matched with a passenger at state s. We adopt
a reduced form expression for the matching probability as a monotonically increasing function
of the ratio of the number of passenger arrivals during the link traversal, λsτs, to the number of
eligible vehicles for matching on link s, xs, that is, ms = 1− exp

{
−αλsτs

xs

}
. The expression for

xs is developed later.
Let p(u|s, a) be the transition probability to state u from s with action a. Two types of

transition could happen. 1) The taxi is not matched with any passenger while traversing link s,
and thus the next state is the chosen link, that is, u = a, with probability 1 −ms. 2) The taxi
is matched with a passenger when traversing s, and u /∈ A+(s) is the passenger’s destination
link. Denote the exogenous destination probability as q(u|s) and the transition probability is
msq(u|s), with

∑
u/∈A+(s) q(u|s) = 1.

The holding time at state s depends on the action and next state, t(s, a, u) = τs, if u = a,
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and t(s, a, u) = τs + c(s, u), if u /∈ A+(s), where τs is the travel time of link s and c(s, u) the
shortest path travel time from the end of link s to the end of link u.

We further simplify the notation by defining the expected additional holding time if matched,
ωs =

∑
u̸=a c(s, u)q(u|s). The expected holding time at state s thus can be written as E[ts] =

(1−ms)τs +ms(τs + ωs) = τs +msωs, during which the vehicle is eligible for matching for the
duration τs traversing link s.

Let µs(ϑ) be the stationary distribution at state s of the embedded MDP if all vehicles
follow policy πϑ, and

∑
s∈S µs(ϑ) = 1. The existence of such a stationary distribution will be

discussed later. Under the assumption that such a distribution exists, the long-term fraction of
time that the SMDP spends at state s, ϕs(ϑ) =

µs(ϑ)E[ts(ϑ)]∑
u µu(ϑ)E[tu(ϑ)] =

µs(ϑ)(τs+ms(ϑ)ωs(ϑ))∑
u µu(ϑ)(τu+mu(ϑ)ωu(ϑ))

. ϑ will
be dropped in the remainder of the paper when needed to simplify notation.

The long-term fraction of time that the SMDP spends at state s being eligible for matching,
ϕE
s is the product of ϕs and the fraction of the holding time when the vehicle is eligible for match-

ing, ϕE
s = ϕs

τs
τs+msωs

= µsτs∑
u µu(τu+muωu)

. Therefore, the long-term average number of vehicles

eligible for matching at state s is xs = MϕE
s = Mµsτs∑

u µu(τu+muωu)
. Combining it with the matching

probability equation, and we have a fixed point problem, ms = − exp
{
−α

λs
∑

u µu(τu+muωu)
Mµs

}
.

We prove the existence and provide sufficient conditions for the uniqueness of the fixed point,
which makes the mapping from µ to ms a continuous function.

The state does not include a time stamp, and vehicles continue searching after dropping off
a passenger. The process has no terminal states either temporally or spatially. Two approaches
are typically applied to resolve the infinite-return issue. One is to apply a discount factor to
future rewards, so that the return becomes finite. The discount however can be hard to defend
considering the within-day context. The other approach is adopted in this study where the
average reward per vehicle per time unit, rπ(ϑ) is maximized.

The calculation of the average reward rπ(ϑ) for a given parameter set requires the station-
ary distribution of vacant vehicles. Although the stationary distribution of an irreducible and
aperiodic Markov chain with a constant transition probability matrix is well established, the de-
pendence of transition probabilities on the policy parameter ϑ in this study requires additional
theoretical work. We prove the existence of a stationary distribution, µ(ϑ) and the corresponding
stationary transition probability matrix, p(u|s;ϑ) by utilizing the Brouwer’s fixed-point theorem.
We also provide the sufficient condition for the fixed point mapping to be a contraction map-
ping, that is, when the network structure is regular and the effect of vehicle mass distribution
on matching probabilities are moderate. The contraction mapping ensures the uniqueness of
a stationary distribution for a given parameter set and thus makes the average reward rπ(ϑ)
a proper function. The contraction mapping also leads to the natural choice of a fixed point
iteration algorithm to solve for the stationary distribution and the resulting average reward.

The BFGS algorithm is then used to find the optimal parameter values that maximize the
average reward. The parameter set is small and thus the memory is not an issue and the
memory-efficient L-BFGS is not needed.

4 COMPUTATIONAL RESULTS

A proof-of-concept two-node, four-link (transition to oneself allowed) network case study shows
that the optimal policy makes trade-off between moving to a high-demand area and the cost of
relocation, while heuristics relying purely on demand distributions do not perform as well. It
also shows the divergence of TNC’s revenue maximization from an average driver’s net income
maximization: as the fleet size increases, the total revenue increases, while the average net income
decreases.

A case study in a large network with around 10,000 nodes and 30,000 links is conducted. A
number of measures are tested to improve the running time, including using parallelized matrix
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operations, sparse matrices, MPI (message passing interface) to utilize multiple computers of a
cluster, and GPU to harness its better capability for parallelism. MPI is not effective as the
overhead is large, while the other three measures are effective. The running time is only mildly
increasing in the fleet size, thanks to the model-based system dynamics.

Figure 1 – Stationary Distribution of
Vacant Vehicles with Fleet Size 10000
(7:30am-9:30am)

The policy is parameterized with two features: pas-
senger arrival rate and background vacant vehicle den-
sity. Figure 1 shows that under the optimal policy va-
cant vehicles tend to stay in and move towards areas
with high demand such as the city center and trans-
portation hubs, consistent with intuition (the heat map
is grid-based using the sum of stationary distribution
over all nodes within each cell). As the fleet size in-
creases, the optimal policy dictates more widely spread
vacant taxis and the optimal unit profit decreases, sug-
gesting that competition leads to certain loss of profit. A
tabular, deterministic policy obtained from a single taxi
routing problem serves as a benchmark. As shown in
Table 2, when fleet size is 1, the unit profit of the prob-
abilistic optimal policy is less than that of the bench-
mark policy due to the parameterization. The optimal
policy outperforms the benchmark policy with a large enough fleet size. The improvement grows
with the fleet size, reflecting the increasing benefit of taking competition into account as the
competition becomes more consequential.

Strategy Fleet Size Unit profit (CNY/hour) (Occupancy rate)
5:30 am to 7:30 am 7:30 am to 9:30 am 9:30 am to 11:30 am Overall

Optimal probabilistic policy
1 74.2 (0.45) 84.9 (0.52) 88.1 (0.55) 82.4 (0.50)
5,000 71.3 (0.44) 82.0 (0.50) 84.1 (0.51) 79.1 (0.49)
10,000 68.8 (0.43) 78.8 (0.48) 81.2 (0.50) 76.2 (0.46)

Deterministic policy
1 75.4 (0.46) 87.9 (0.54) 91.5 (0.56) 84.9 (0.52)
5,000 66.8 (0.43) 78.6 (0.48) 79.4 (0.48) 74.9 (0.46)
10,000 60.1 (0.41) 73.1 (0.45) 75.0 (0.45) 69.4 (0.43)

Note: the number in parenthesis is the occupancy rate.

Table 2 – Average reward of different strategies based on trajectory simulation
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