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1 INTRODUCTION

The appeal of a railway system for passengers is dependent on several characteristics such as
travel and transfer times, or the ticket price. Transfers are of particular importance as they
establish connections between an origin and a destination where no direct connection is at hand.
They must be feasible, i.e., the time between the arrival of the first train and the departure of
the second train must not be too small to establish a connection. Still, it should also not be too
large, as transfer waiting time is perceived as inconvenient by passengers. Both the feasibility
of connections and the transfer waiting time, and hence the total travel time, can be influenced
by adjusting the departure and arrival times of involved trains. In Giacco & Dell’Olmo (2022)
an optimization model for the resulting Connection Optimization Problem is investigated for
roughly 10,000 daily trains and 2,000 stations in Italy. Computational results indicate potential
for increasing the number of connections between 5% for ±1 minute shifts up to 15% for ±8
minute shifts. In this paper, the model is further enhanced by additional constraints to improve
the model’s accuracy and consider passenger flows given by an OD matrix. The presented
enhanced MILP model was evaluated on instances from the Italian passenger railway network.
Finally, we will discuss the impact of the extensions of the enhanced model. The Connection
Optimization Problem considered here shows some significant similarities to timetabling and
line planning problems which is a very well-studied field in railway optimization, see Nachtigall
(1999), Liebchen (2008), Caimi et al. (2017), or Borndörfer et al. (2015) for further insight.

2 THE CONNECTION OPTIMIZATION PROBLEM

Following the notation in Giacco & Dell’Olmo (2022), let I denote the set of trips. Each trip
visits a set of stops Si ⊆ S at stations S. Let AT s

i , DT
s
i denote the initially scheduled arrival and

departure time of train i at station s. Further let Inf ≤ tsi ≤ Sup be a time shift that results in
updated departure and arrival times AT s

i = AT
s
i + tsi and DT s

i = DT
s
i + tsi , respectively. There

is a connection between trains i and j at station s if MCT ≤ ∆s
ij = DT s

j − AT s
i ≤ MCT + β,

where MCT represents the minimum connection time and β the width of the connection time
window. The MCT is mostly dependent on the station’s topology, i.e., the distance of the
involved platforms while β is considered as a parameter of the problem. Let C ⊂ S × I × I
denote the set of possible connections. Then the Connection Optimization Problem (COP) is to
determine time shifts that maximize the total weight of all established connections.
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In this problem, two arbitrary connections are interchangeable regardless of their importance
for possible passengers. To enable the problem to distinguish between important and non-
important connections let D ∈ Q|S|×|S| be an OD-matrix that states the expected passenger
demands D. For each pair of origin and destination stations o, d ∈ S let Pod denote a set of
paths that connect o and d along trips of I and feasible connections between them. Further, let
κi ∈ Q be the maximum passenger capacity of a trip i ∈ I. Then, the Passenger Connection
Optimization Problem (PCOP) is to determine time shifts such that the weighted sum of the
total number of routed passengers along o-d-paths and the number of feasible connections is
maximized while the trip’s capacities and the demands are not over exceeded.

2.1 A Mixed Integer Linear Programming Formulation to the (P)COP

The (P)COP can be formulated as mixed integer linear programming formulation as follows:

max ν
∑

(s,i,j)∈C

xsij + µ
∑
o,d∈S

∑
p∈Pod

Dodyp (1)

Infs
ij ≤ ∆s

ij + (Infs
ij −MCT )xsij ∀ (s, i, j) ∈ C, (2)

∆s
ij + (Supsij −MCT − β)xsij ≤ Supsij ∀ (s, i, j) ∈ C, (3)

∆s
ij = DT

s
j + tsj −AT

s
i − tsi ∀ (s, i, j) ∈ C (4)

σs′s
i ≤ tsi − ts

′
i ≤ τ s

′s
i ∀ i ∈ I, s, s′ ∈ Si, s = succ(s′) (5)∑

p∈Pod

Dodyp ≤ Dod ∀ o, d ∈ S (6)

∑
p∈P s

i

Dpyp ≤ κi ∀ i ∈ I, s ∈ Si (7)

yp ≤ xsij ∀ (s, i, j) ∈ Cp (8)
tsi ∈ [Inf, Sup] ∀ i ∈ I, s ∈ Si (9)

xsij ∈ {0, 1} ∀ (s, i, j) ∈ C, (10)
yp ∈ [0, 1] ∀ p ∈ P. (11)

The MILP formulation contains three types of decision variables. Rational variables tsij , that
define the shift of the arrival and departure times of each stop of each trip; rational variables yp
that give the fraction of demand Dod that is routed along p ∈ Pod; as well as binary variables
xsij deciding whether a connection is feasible or not. The objective function (1) maximizes
the weighted sum of the number of established feasible connections and the aggregated routed
passenger demand. The constraints (2),(3), and (4) ensure the correct setting of the respective
connection feasibility variable, where Inf s

ij := DT
s
j − Inf −AT

s
i + Sup is a lower and Supsij :=

DT
s
j + Sup−AT

s
i − Inf an upper bound on the transfer time from train i to train j at station

s. By (5) the deviation of arrival and departure time shifts of consecutive stops of a single trip
is bounded to the choice of bounding parameters σs′s

i and τ s
′s

i . The passenger flow is handled
by the constraints (6),(7), and (8). Constraints (6) and (7) ensure that the maximum demand
for each o-d-pair, respectively the capacity of each trip is not exceeded. (8) makes sure that
path variables yp can only route demand if all connections in Cp are feasible, respectively all
connection variables xsij along the respective path are equal to one. Finally, variable domains
are defined by (9) - (11).

2.2 Computing reasonable o-d-Paths

The PCOP is heavily dependent on the set of feasible passenger paths P that are available to
route the given demand. P is computed from a directed graph G = (N,A) which is constructed

TRISTAN XII Symposium Original abstract submittal



3

as follows. The node set N contains artificial origin and destination nodes for each station s ∈ S
as well as departure and arrival nodes for each stop s ∈ Si of each trip i ∈ I. The arc set A
contains arcs from each artificial departure node to departure nodes of trips at the respective
station; arcs connecting the departure node of stop s′ ∈ Si of trip i with the arrival node of it’s
succeeding stop s = succ(s′) ∈ Si; arcs connecting an arrival node with the respective departure
node of a stop s ∈ Si; arcs for each possible connection (s, i, j) ∈ C, connecting the arrival nodes
of trip i to the departure node of trip j at station s; and arcs connecting arrival nodes of stops
s ∈ Si to the artificial arrival node of station s. Each arc duration is according to the maximum
of the head node’s departure or arrival time minus the tail node’s departure or arrival time and
the minimum connection time between the two stops.

To compute reasonable sets of paths a k-shortest-path-algorithm described in Maristany de las
Casas (2024) is used on graph G for each given o-d-pair. The value of k is chosen in dependence
on the demand and ranges between 40 for higher and 10 for lower demands.

3 COMPUTATIONAL RESULTS

The MILP formulation modeling the PCOP was evaluated on instances from the Italian passenger
railway network. The underlying network contains 3295 stations and roughly 11000 trips of
different modes of operation. Ranging from long-distance high-speed train services to urban
train services in larger metropolitan areas. The computations considered all regional and urban
train services as fixed, while all train arrivals and departures belonging to inter-city and long-
distance services are allowed to be shifted. The maximum connection time β equals 30 in all
our computations, while the MCT is dependent on the station layout and ranges between 300
and 900 seconds. Moreover, three different parameter settings for σs′s

i and τ s
′s

i of constraint (5)
were considered. For the first setting, which is called fixed, we assign σs′s

i = τ s
′s

i = 0 and thus
enforce that each stop s ∈ Si of a trip is shifted in the same way along the train’s route. For
the second, so-called increasing, setting σs′s

i = 0 and τ s
′s

i = Sup, which forces consecutive stops
of the same trip to be shifted in a non-decreasing way. Finally, the unlinked setting is defined
by dropping (5) completely. All computations were performed on Intel(R) Core(TM) i7-9700K
CPU @ 3.60GHz with 64 GB of RAM using Cplex (2009) 12.8.0 with an LP-IP gap tolerance of
0.01, a run time limit of 3600 seconds, and a maximum of eight threads in parallel.

Table 1 – Results for solving the MILP formulation of the COP, i.e., ν = 1.0, µ = 0.0

[0,0] [-1,1] [-2, 2] [-3,3] [-4, 4] [-5,5]
Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU

fixed 1.0 0.2 1.01 0.9 1.02 2.6 1.03 110.7 1.04 3473.7 1.05 3601.3
increasing 1.0 0.2 1.02 1.0 1.03 5.0 1.05 37.4 1.06 1001.5 1.07 2148.5
unlinked 1.0 0.2 1.04 1.8 1.07 3.9 1.09 5.9 1.11 12.2 1.13 19.0

Table 1 shows the results with a parameter setting of ν = 1.0 and µ = 0.0, i.e., maximizing
the number of feasible connections. Each row of the table refers to either the fixed, increasing, or
unlinked setting. Each column headlined with Obj marks the relative objective function value,
i.e., the objective function value divided by the objective function value obtained by the com-
putation without possible shifting options, i.e., Inf = 0 and Sup = 0. Columns headlined with
CPU solve the runtime in seconds required to solve the respective instance. The three different
settings can be interpreted as a sequence with increasing freedom of choice to shift arrival and
departure times but with the rising potential of enforcing an infeasible timetable. Especially
for the unlinked setting even driving times between two stops could become insufficient. Nev-
ertheless, values for the objective function of this setting define a valid bound on the maximum
potential of the other settings. It turns out that with an increasing interval of possible arrival
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and departure time shifts from [−1, 1] to [−5, 5] the maximum number of feasible connections
raises to 5, 7, or 13 percent depending on the respective setting. This rise of potential is bought
by an increase of the computation time, though this increase is not a crucial one.

Table 2 – Results for solving the MILP formulation of the PCOP, i.e., ν = 0.0, µ = 1.0

[0,0] [-1,1] [-2, 2] [-3,3] [-4, 4] [-5,5]
Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU Obj CPU

fixed 1.0 0.5 1.00 1.0 1.01 1.5 1.01 2.1 1.02 4.7 1.02 10.8
increasing 1.0 0.5 1.00 1.1 1.01 1.6 1.01 2.1 1.02 4.2 1.02 6.5
unlinked 1.0 0.5 1.00 0.8 1.01 0.9 1.01 1.2 1.02 1.9 1.02 2.1

Table 2 shows the results of solely maximizing the number of routed passengers. It turns
out that in this case, the gap between the different settings disappears. This might be a result
of the fact that some of the connections that could be enforced via the shifting are simply not
necessary to route the passenger flow. Additionally, the relative maximum increase compared to
the increase seen for the maximum number of connections decreases from 13 to 2 percent this
might be related to the fact that the potential increase of routed passengers is bounded by the
maximum demand from which large parts could be routed in any case just by direct connections.
From the computational point of view, it turns out that all three settings have way shorter
computation times compared to the results of Table 1. This is the result of the fact that the flow
could be routed in many ways which enlarges the set of optimal solutions within the solution
space.

4 CONCLUSION

In this paper, we presented an approach to optimize connections of existing railway timetables
taking into account passenger demands, respectively passenger routes. The approach was eval-
uated on real-life instances from the Italian railway network. Although the approach does not
guarantee operationally feasible updated timetables as it does not take the microscopic infras-
tructure nor laboring constraints into account, it gives insight into the potential of small changes
to the timetable. It can be used to point out certain connections that could be beneficial for
routing passengers without changing the overall timetable too much. As our computations were
limited to shifting only the arrivals and departures of long-distance train services we will further
investigate instances where all train types or only regional trains are considered as adjustable.
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