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1 INTRODUCTION

Globally, international tourism has increased since COVID, and receipts from this industry were
found to exceed 1.5 trillion USD in 2023. Several tourism companies offer web and mobile services
to help travelers plan their itineraries when visiting attractions within a city. For example,
platforms such as Go City, CityPASS, Paris Passlib’, and I Amsterdam sell passes for multiple
attractions (ranging from day passes to six-day passes). However, these services are often not
integrated with mobility/routing applications. Users touring a new place often depend on public
transportation or ride-hailing services and taxis and have to plan their itineraries manually, i.e.,
the order in which attractions must be visited and how to get from one attraction to another.
This research focuses on optimizing costs of such itineraries using an integer programming model.

Although the problem resembles TSPs and VRPs at the outset, several features make this
variant challenging. First, travel times between attractions are time-dependent (due to congestion
for private transport modes or scheduled transit trips). Second, the duration of the visit may
also depend on when a traveler begins touring an attraction. Certain times of the day might
be crowded, or some attractions may start at specific times (such as guided tours). In addition,
public transportation services, fares, opening hours for attractions, and entry prices could also
vary from day to day. Furthermore, the problem parameters may not satisfy First In First Out
(FIFO) properties. For example, a traveler can catch a faster metro/train service by starting
later. In attractions with a network of queues, travelers arriving later can finish their tour earlier.
From a mathematical standpoint, several of these features complicate modeling. For instance, the
MTZ constraints for the TSP would take the form tj ≥ ti+ δi(ti)+ τij(ti+ δi(ti))+−M(1−xij),
where ti represents arrival time at attraction i, τij is the travel time between i and j and δi
denotes the duration of visit at attraction i. The time dependence is usually non-linear, and this
problem cannot be reformulated as one of the existing models.

The literature on time-dependent TSPs (Gendreau et al., 2015, Montero et al., 2017, Fontaine
et al., 2023) focuses on road networks and hence makes different assumptions that do not hold in
this setting. Very few studies assume service times are time-dependent but assume FIFO ordering
(Taş et al., 2016). The literature on itinerary planning does not explore time-dependence in travel
and visiting attractions and focuses mainly on heuristics (Kotiloglu et al., 2017, Liao & Zheng,
2018). Our main contribution is formulating this problem as an integer programming model
and proposing a column-generation approach to discover new itineraries integrated into a price-
and-branch method. The period of interest is discretized into smaller intervals, and the pricing
problem is formulated as a shortest path problem with conflicts.
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2 METHODOLOGY

Table 1 – Notation for the IP formulation

Symbol Description
Sets
D Set of days for the tour
A Set of attractions to be visited
Pd Set of time periods available to travel and to visit attractions on day d

W d
i Set of time periods or time window in which attraction i is open on day d

Parameters
τdpij Travel time between locations i and j on day d departing in period p

δdpi Duration of the visit to attraction i on day d when arriving in period p

κdpi Cost of visiting attraction i on day d in period p

πd Last time period for touring on day d (i.e., maximum of elements in Pd)
ωd
i Closing time period of attraction i on day d (i.e., maximum of elements in W d

i )
λd Starting location of the traveler on day d

µd Ending location of the traveler on day d

Variables
xdpij Binary variable which is one if the traveler moves from node i (origin location

or attraction) to node j (destination location or attraction) on day d departing
in period p, i.e., i, j

ydpi Binary variable which is one traveler arrives at attraction i on day d in period
p and is zero otherwise

Time is divided into equal intervals and are assumed to be contiguous. The Tourist Itinerary
Planning (TIP) problem involves minimizing the cost of visiting a given set of attractions. It can
be formulated using the following IP (some constraints are skipped due to space limitations).

max
∑
d∈D

∑
i∈A

∑
p∈Pd∩W d

i

κdpi ydpi (1)

s.t.
∑
d∈D

∑
p∈Pd∩W d

i

ydpi ≤ 1 ∀ i ∈ A (2)

∑
q∈Pd∩W d

j ,q≥p+τdpij

ydqj ≥ xdpij ∀ d ∈ D, i ∈ A ∪ {λd}, j ∈ A, p ∈ Pd (3)

∑
j∈A∪{µd}\{i}

∑
q∈Pd,q≥p+δdpi

xdqij ≥ ydpi ∀ d ∈ D, i ∈ A, p ∈ Pd ∩W d
i (4)

∑
p∈Pd∩W d

i

(p+ δdpi )ydpi ≥ ωd
i ∀ d ∈ D, i ∈ A (5)

∑
i∈A

∑
p∈Pd

(p+ τdpiµd
)xdpiµd

≤ πd ∀ d ∈ D (6)

xpdij ∈ {0, 1} ∀ d ∈ D, i ∈ A ∪ {λd}, j ∈ A ∪ {µd}, p ∈ Pd (7)

ypdi ∈ {0, 1} ∀ d ∈ D, i ∈ A, p ∈ Pd ∩W d
i (8)

An attraction is visited at most once due to (2). Constraint (3) sets the start time of touring
attraction j depending on when the tourist left the attraction/origin i. If xdpij is active in period
p, then the traveler would reach attraction j at p + τdpij and can hence tour attraction j after
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that time which is captured in the left-hand side (note that waiting is allowed and hence the
x variables may be active in periods outside the open hours of attractions but the y variables
cannot). Constraint (4) sets the departure decisions at attraction i depending on when the
traveler started touring attraction i. If ydpi is active in period p, then it takes the traveler p+ δdpi
periods before they can travel to any other attraction/destination j ̸= i. Visit to an attraction
must finish before its closing time because of (5). Note that

∑
p∈Pd

pydpi is the period in which
the traveler starts visiting attraction i on day d and

∑
p∈Pd

(p + δdpi )ydpi indicates the period of
completion of the visit at attraction i. The traveler must be able to reach their destination for
each day due to (6). Two more sets of constraints are not shown here. The first restricts the
sum of x variables, leaving attraction i across days and time periods to be equal to one, and
the second ensures that the traveler is only at one location in every period. Finally, (7) and (8)
impose integrality constraints on the decision variables.

The above formulation can be reformulated using new binary path variables zdr , which con-
nects the start locations λd with µd. We first create a time-expanded graph with four types
of nodes copies: (1) the origin locations expanded as (λd, p), where p ∈ Pd, (2) the destina-
tion locations (µd, p), where p ∈ Pd, (3) ‘in’ attraction nodes at which one starts visiting an
attraction and are of the type (i, p, ‘in’), and (4) ‘out’ attraction nodes which represent the end
of an attraction visit and are of the type (i, p, ‘out’). Figure 1 shows an example graph with
three attractions. The node copies for different periods are aligned vertically, with the ones at
the bottom representing earlier time periods. The traveler starts at the bottom left origin node
and proceeds towards the top right destination node. Waiting is modeled using the black arcs.
The red edges are used for traveling between origins/destinations and between attractions. The
purple edges connect the ‘in’ and ‘out’ nodes of an attraction and represent the visit duration.
Attraction 1 does not open until the fourth period; hence, the first three periods only have an
‘in’ node. Likewise, Attraction 2 closes three time periods before the traveler’s last time period.
These nodes are needed since the FIFO property may not hold, as seen in some intersecting edges.
Note that the time-expanded graph can be different for different days depending on traffic and
transit schedules and properties of attractions. Let zdr be an itinerary the traveller chooses on
day d and let cdr be its cost. Then, the set-partitioning version of the TIP problem can be written
as min

∑
d∈D

∑
r∈Rd

cdrz
d
r , subject to

∑
d∈D

∑
r∈Rd

zdr = 1 ∀ i ∈ A, and
∑

r∈Rd
zdr ≤ 1 ∀ d ∈ D.
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Figure 1 – Time expanded graph for the pricing problem

Figure 2 – Sample attractions

For multi-day itineraries, we generate the initial solutions to this problem greedily by finding
attractions that can be visited on the first day, removing them from the set of available attractions
for the next day, and proceeding similarly. Using the dual values for each attraction, we set up
pricing problems by modifying the costs of the purple edges. The pricing problem is a variant
of the shortest path, which prevents re-visiting the same attraction. Since it is formulated on
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a time-expanded graph, it can be viewed as a shortest path with conflicts (Şuvak et al., 2021,
Cerulli et al., 2023) where only at most one of the purple edges is allowed to carry flows.

3 RESULTS

We tested the two approaches using attractions in Paris (Figure 2) and an intel i7-12700 machine.
The edge costs were drawn from a uniform distribution and were assumed to vary over different
days and time periods. Table 2 shows the performance of the IP (with a runtime limit of 10
min) and column generation (CG). We tested 5 instances with different numbers of attractions
(column 1) and 1–5 days (rows). The CG method (using an integer program for the pricing)
finds the optimal solution faster than IP in all cases. In many cases, the IP does not find an
integer incumbent; in some cases, the CG approach does not find an initial greedy solution.

Table 2 – Objective value (runtime in s or GAP in % when terminated early). INF: Infeasible,
NFS: No feasible solution found. 1-day solutions were infeasible.

Days 2 3 4 5
Attr. MIP CG MIP CG MIP CG MIP CG
5 51 (2.3) 51 (1.2) 51 (11.6) 51 (1.9) 51 (34.9) 51 (4.9) 51 (42.3) 51 (6.0)
10 124.5 (0.8) 124.5 (17.9) 124.5 (0.8) 124.5 (25.6) 125.5 (2.3) 124.5 (40.7) 125.5 (2.3) 124.5 (54.3)
15 NFS NFS NFS 163 (34.7) NFS 163 (69.4) 171 (11.6) 163 (81.7)
20 NFS NFS NFS 185 (87.8) NFS 185 (112.7) NFS 185 (140.1)
25 NFS NFS NFS NFS NFS 211 (161.0) NFS 211 (210.2)

4 DISCUSSION

For the future, Paerto-optimal multimodal (transit/private travel) journeys can be used between
attractions and origins/destinations to create multiple edges from a node in the time-expanded
graph. One could extend the column generation approach to a branch and price method for
exact solutions. Finally, preprocessing the graph by removing nodes that cannot be reached (or
cannot reach the destination) before a specific time can speed up runtimes.
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