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1 INTRODUCTION

The focus of the paper is on the medium term dynamics of transportattion networks in the context
of DTA (Dynamic Tra�c Assignment), in particular the formation of a network equilibrium.

The context of this question is evolving due to technological progress. Travellers bene�t from
new means of information (crowd sourcing, internet operators, connectivity of vehicles), which
can inform them on the current network state nearly instantaneously. As a result, travellers
interact over the whole range of the network indirectly, through the agency of the information
systems. Do the route choices carried out in these conditions lead to network equilibria? Insta-
bilities must be expected, if only because tra�c conditions change while travellers are moving
and they will not meet the conditions upon which they based their decisions. In the future, the
emergence of automated vehicles, expected to be controlled in order to optimize their passengers'
trips, will add another level of complexity in the transportation system. The day-to-day process
of departure time and route choice process should be impacted, and it is not obvious whether
networks will function at equilibrium over medium range periods of weeks or months.

The properties of network equilibria in the context of tra�c assignment have been studied
for a long time. Unicity of equilibria in the static case and simple behavioral asumptions is
well-known. Under the same asumptions tra�c on multi-modal networks usually admit several
equilibria, some stable and some unstable. Early works pointed out the possibility of more
complex, even chaotic dynamics (Guo & Huang, 2009), (Han et al. , 2011). More recently
(Cantarella & Fiori, 2022) carried out more complete analyses of the possibility of such complex
behavior in the static case. Less is known in the dynamic case, because of the inherent di�culty
of DTA. Let us mention Iryo (2019), as well as (Liu et al. , 2018) who considered the possibility
of chaotic behavior in a quasi-static context (two departure times).

This paper shows that the results obtained in the static and quasi-static context carry over
to the dynamic case and the paper proposes a framework for addressing such problems.

2 METHODOLOGY

The main tool for this study is the GSOM model Lebacque & Khoshyaran (2018), the basic
features of which are the following: it is macroscopic, with a conservation law for the vehicular
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�ow completed by a behavioral law (fundamental diagram), vehicular and passenger attributes
are advected, and the model admits extensions (multimodal systems, bidimensional representa-
tion of networks).The model admits analytical representations and allows for fast calculation of
network �ows.

The main idea for addressing DTA problems is to consider that i) route choice is carried
out by travellers on the basis of their instantaneous travel costs ITC (travel costs include travel
times, �nancial costs and penalty for early/late arrival time), ii) travellers carry out departure
time choices based on their predictive travel costs PTC. Thus the time scales involved di�er:
the time scale of route choice is nearly instantaneous, resulting from the current state of the
network. The departure time choice is carried out on a day to day basis based on experience
and learning. The total OD demands, Dta

w , given for all OD (origin-destination couples) w ∈ W
and all desired arrival times ta ∈ Ta, constitute the main data of the DTA problem. The route
choice proportions $ta

p (t), for all relevant OD paths p ∈ Pw, all ODs w ∈ W and all times t ∈ Td
within the day, and the distribution of departure times, ϕtap (t), for all ODs w ∈ W and all times
t ∈ Td, constitute the unknowns of the problem.

The within the day dynamics of the system can be summarized by Ẋ(t) = F (ϕ,$,X(t))
with X(t) the state of the network at time t. The GSOM model provides this expression F . The
route choice $ results from the current state X(t) via the instantaneous travel times, from which
the instantaneous travel costs are deduced, thus ITC(t) = I (X(t)) and $(t) = Ω (ITC(t)) (for
instance by a Logit model), i.e. $(t) = Ω (I (X(t))). We can summarize this whole process as
X = X (ϕ,$,X0). From these dynamics the experience travel times are observed, from which
the predictive travel times and travel costs are deduced: PTC = Π(X). Finally the predictive
travel times yield the departure time distribution: ϕ = Φ(PTC). The network equilibrium is
de�ned by ∣∣∣∣∣∣∣∣∣

X = X (ϕ,$,X0)
$ = Ω (I (X))
PTC = Π(X)
ϕ = Φ(PTC)

(1)

Since all functions in (1) are continuous and the unknowns ϕ,$ are de�ned on closed bounded
convex sets (they are probability distributions), it follows by Brouwer or Kakutani type argu-
ments that equilibria solutions of (1) exist.

In a day-to-day iterative process travellers carry out their choice based on experience and
learning. Let τ denote the day/iteration index. The day-to-day iterations yield successive es-
timates ϕτ , $τ and corresponding network states Xτ and predictive travel costs PTCτ . The
most basic conceivable iteration would be PTCτ+1 = Π(Xτ ), ϕτ+1 = Φ(PTCτ+1), i.e. with no
learning. This scheme does not converge, nor does it represent traveller behavior. In numerical
applications we use schemes of the general form

PTCτ+1 = p (Π(Xτ ), PTCτ )
ϕτ+1 = f

(
Φ(PTCτ+1), ϕτ

) (2)

with p and f linear smoothing schemes. Many other learning schemes can be de�ned, for instance
over several iterations. Also learning behavior is liable to concern $.

3 RESULTS

Most studies reported here were made on a large network (15 × 25 km) west of the Ile-de-France
region in which we consider 4 main OD couples and the morning peak (7.30-11 am). The tra�c
is modelled by GSOM. In the cases reported here we used Logit assignment and simple learning
strategies (linear smoothing) as in (Liu et al. , 2018) and (Cantarella & Fiori, 2022).

Multiple equilibria can occur. Figure 1 illustrates such an occurrence. The �gure depicts the
dynamics of the systems under two di�erent learning strategies: i) with ϕ and PTC learning
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Figure 1 � Comparison of system dynamics estimated i) with PTC,ϕ learning (purple) and ii)
without PTC learning (in red). Horizontal axis: τ iteration (day) index
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Figure 2 � Emergence of a period 4 solution with constant smoothing coe�cients. Left: SO as a
function of τ , right departure time distribution

(purple curves) and ii) without PTC learning (red curves). Two criteria have been chosen,
in ordre to synthetize the system dynamics, the SO system optimum criterion (left) which
measures the total cost spent by all travellers in the network, and the SUE (User Equilibrium)

criterion (right) which measures the proximity with the user equilibrium for departure times.
The SUE criterion is de�ned as

SUE
def
=

∫
Td
dt

∑
w∈W,ta∈Ta

[
PTCtaw (t)−min

s∈Td
PTCtaw (s)

]
.Dta

w ϕ
ta
w (t)

The SO criterion (on the right) converges in both cases but increases (by 25%) which implies that
the user equilibrium actually deteriorates the collective state of the system. The SUE criterion
(left part of Figure 1) also exhibits convergence at di�erent levels, but with oscillations in the
case without PTC learning. The long term oscillation (SUE without PTC learning, in red)
suggests oscillations of increasing period. These are actually observed in many con�gurations,
and indicate instability of the route choice equilibrium process and unstable equilibria.

Periodic solutions are likely to occur. An example of such a situation is depicted by Figure 2,
which shows the emergence of a periodic solution of period 4 (obtained with constant smoothing
coe�cients). The number of iterations for the emergence of this solution is all the greater than
the smoothing coe�cients are smaller. The emergence of the periodic solution is particularly
apparent on the SO versus iteration diagram, Figure 2, left. The corresponding travel demand
(versus iteration and time) is illustrated by Figure 2. Precisely we have chosen one OD and one
desired arrival time, and the �gure shows the corresponding distribution ϕτ,taw (t) on the vertical
axis. Departure time t lies on the horizontal axis, iteration (day) τ on the diagonal axis. Several
major changes in the departure time pattern can be noted, before the periodic regime stabilizes.
The qualitative impact of the periodic oscillations on the departure time distribution is small.

The Figure 3 shows a con�guration which displays a persistent erratic behavior at all itera-
tions. In this case no stabilization nor equilibrium formation occurs.

TRISTAN XII Symposium Original abstract submittal



4

0 10 20 30 40 50

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
e

m
a

n
d

7.07.58.08.59.09.510.010.511.0
Time

0
5

10
15

20
25

30
35

40
45

50

Iteration

Figure 3 � Con�guration with no stabilization. The left part of the �gure depicts the SO criterion,
the right part the departure time distribution ϕτ,taw (t) for one OD, one desired arrival time (ta =
8.30 am. Horizontal axis: departure time t, diagonal axis: iteration/day τ .

On the other hand smoothing parameters chosen to satisfy the divergent series rule usually
lead to the convergence of the system to an equilibrium, but whether this rule can satisfactorily
represent traveller behavior is debatable.

4 DISCUSSION

The results obtained con�rm and extend to the DTA context previous results described in the
literature (Chiu et al. , 2011), Liu et al. (2018), Cantarella & Fiori (2022), Lebacque & Khosh-
yaran (2024). In particular we obtained multiple equilibria, periodic dynamics, solutions ex-
hibiting oscillations with increasing periodicity suggestive of unstable equilibria, and dynamics
exhibiting persistent instability. The nature of the medium term dynamics depend strongly on
the parameters such as demand level and demand structure, but also on the learning strategies.
This last point is fundamental, as it has strong implications in practice with respect to traveller
information services and to transportation systems management.
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