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1 INTRODUCTION

Airline operations are pivotal to global transportation and economies, with efficiency directly
impacting passenger satisfaction, economic performance, and environmental sustainability. A
key challenge in airline operations is delay propagation, particularly within tail networks where
aircraft assignments and crew schedules are intricately linked. Delay propagation refers to the
phenomenon where initial flight delays cause subsequent flights to be delayed due to rotational
dependencies, crew assignments, and passenger connections. This cascading effect not only
undermines operational efficiency and customer satisfaction but also leads to increased fuel con-
sumption and greenhouse gas (GHG) emissions, exacerbating environmental impacts. Studies
clearly indicate that a significant percentage of flight delays are reactionary, caused by preceding
delays rather than initial exogenous factors. Traditional statistical models, such as linear regres-
sion and time-series analysis (Erdem & Bilgiç, 2024, Pineda-Jaramillo et al., 2024), have been
employed to predict flight delays. While effective in identifying linear relationships and temporal
trends, these models often fail to capture the nonlinear interactions and network effects inherent
in delay propagation within tail networks.

Advanced machine learning techniques, including graph neural networks (GNNs) and neural
operators (Kovachki et al., 2023), have shown promise in modeling complex systems, including for
airport situational awareness (Shao et al., 2022). Neural operators can learn mappings between
function spaces and have been applied in physics-informed modeling and fluid dynamics (Li et al.,
2024). GNNs effectively capture dependencies and learn representations in applications such as
vehicle routing, supply chain management, and energy network optimization. However, their
application to airline delay propagation remains under-explored. Addressing this gap is critical
not only for enhancing operational efficiency but also for reducing aviation’s environmental foot-
print and decarbonizing the industry (EUROCONTROL, 2023). Delay propagation contributes
to increased emissions due to extended flight times and inefficient resource utilization. Therefore,
innovative solutions that mitigate delays can play a significant role in decarbonizing air travel
and supporting climate adaptation and mitigation efforts.

In this paper, we propose a novel graph-based learning framework that integrates neural oper-
ators (Kovachki et al., 2023) with GNNs to accurately model local and global interactions within
airline tail networks. Our approach captures dynamic, nonlinear relationships between flights,
enabling more precise prediction of delay propagation. Additionally, we introduce a method for
calculating Delay Absorption Capacity (DAC) using our advanced models, providing valuable
insights into network resilience. This offers an opportunity to offer actionable recommendations
for improving operational planning, resource allocation, and ultimately contributing to emission
reductions and sustainability in airline operations. To the best of our knowledge, this is the first
extension of neural operators to both operations research and specifically to delay propagation
modeling and mitigation in the aviation industry. The remainder of this paper is organized
as follows. Section 2 details the data collection process and modeling methodology. Section 3
presents the experimental results and evaluates the model’s performance. Section 4 discusses the
implications of our findings, potential, future research directions, and concludes.
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2 METHODOLOGY

We propose a graph-based learning framework utilizing Graph Neural Operators (GNOs) to
model and predict delay propagation in airline networks. Our methodology encompasses data
preparation, construction of a flight network graph, modeling delay propagation using GNOs,
model training, and calculation of DAC. Below, we detail each component.

2.1 Mathematical Formulation and Graphical Representation

We consider a dataset D = {(xi, yi)}Ni=1 of N flights, where each flight i is associated with a
feature vector xi and target variable yi (e.g., delay prediction). Each flight i is characterized by
(1) Temporal Attributes: Flight date, scheduled (CRS) and actual departure (DEP) and arrival
(ARR) times, day of the week. (2) Identifiers: Carrier code, flight number, tail number (aircraft
identifier, TAIL_NUM). (3) Route Information: Origin and destination airports. (4) Delay
Metrics: Departure and arrival delays, causes of delay (e.g., carrier, weather, NAS, security, late
aircraft). (5) Operational Details: Cancellation/diversion status, flight duration, distance.

Sequential Flight Connections To model delay propagation through aircraft rotations, we
examine the sequence of flights for each aircraft a ∈ A, where A is the set of all aircraft identified
by their tail numbers. For each aircraft a, we define an ordered sequence of flights {f (a)

k }na
k=1.

For consecutive flights f
(a)
k and f

(a)
k+1 (k = 1, . . . , na − 1), scheduled ground time - SGT(a)

k =

CRS_DEP_TIME(a)k+1−CRS_ARR_TIME(a)k ; the actual ground time (AGT) as AGT(a)
k = DEP_TIME(a)k+1−

ARR_TIME(a)k ; the slack time (Slack) as Slack(a)k = SGT(a)
k − Tmin, where Tmin is the minimum

required turnaround time; and the propagated delay as ∆(a)
prop(k) = max

{
0, AGT(a)

k − SGT(a)
k

}
.

Normalization and Encoding Continuous numerical features are normalized using z-score
normalization xnorm

i = xi−µx

σx
, where µx and σx are the mean and standard deviation of feature

x. Each categorical variable (feature) with high cardinality (e.g. TAIL_NUM) is mapped to an
embedding vector ec ∈ Rd, where d is the embedding dimension.

Construction of the Flight Network Graph We represent the airline operations as a
directed graph G = (V,E), capturing the structural and operational dependencies crucial for
modeling delay propagation. Each node vi ∈ V corresponds to flight i and carries a feature
vector xi containing flight features described earlier. These features encapsulate the state of
each flight, including scheduling, delays, and operational details. An edge eij ∈ E exists from
node vi to node vj if flight j immediately follows flight i in the sequence operated by the same
aircraft E =

{
(i, j) | flight j = f

(a)
k+1, flight i = f

(a)
k , a ∈ A, k = 1, . . . , na − 1

}
. Edge features

eij represent the relationship between i and j, including connection type (aircraft rotation), time
between flights (ground time between arrival of i and departure of j), and resource sharing.

Graph Representation Matrices To facilitate the application of GNOs, we define the fol-
lowing matrices: (1) Adjacency Matrix A ∈ RN×N as Aij = 1, if there is an edge from flight
i to flight j; 0 otherwise. (2) Node Feature Matrix: X ∈ RN×D: Each row corresponds to
the feature vector xi of node i, with D being the feature dimension. (3) Edge feature matrix:
E ∈ R|E|×F : Each row corresponds to the feature vector eij of edge eij , with F being the edge
feature dimension. The constructed graph G = (V,E), along with these matrices, serves as the
foundation for applying GNOs. This framework enables the model to capture both the individual
flight features and the relational information indicative of delay propagation pathways.

2.2 Modeling Delay Propagation Using Graph Neural Operators

We employ GNOs to model delay propagation by leveraging the constructed graph G. GNOs
extend the capabilities of GNNs by learning operators that map between function spaces, allowing
them to capture complex spatial and temporal patterns in graphs.
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Graph Neural Operator Architecture Our GNO framework combines local message-passing
mechanisms with global operator learning. The update rule for node i at layer l is given by
h
(l)
i = σ

(
W(l)h

(l−1)
i +

∫
Ω κ(l)(vi, v)h

(l−1)(v) dv
)
, where: h

(l)
i ∈ Rdl is the hidden representation

of node i at layer l,σ is an activation function (e.g., ReLU),W(l) ∈ Rdl×dl−1 is a learnable weight
matrix,κ(l)(vi, v) is a kernel function learned by the operator, capturing interactions over Ω. In
practice, we approximate the integral by aggregating over neighboring nodes in Eq 1, where N (i)
denotes the set of neighbors of node i, and κ(l)(vi, vj) can be parameterized as in Eq 2, with Ψ(l)

being a learnable function (e.g., a neural network) that depends on node and edge features.

h
(l)
i = σ

W(l)h
(l−1)
i +

∑
j∈N (i)

κ(l)(vi, vj)h
(l−1)
j

 , (1)

κ(l)(vi, vj) = Ψ(l) (xi,xj , eij) , (2)

Incorporating Global Interactions To capture global patterns, we integrate spectral meth-
ods using the Fourier Neural Operator (FNO) within the GNO framework. The FNO component
operates in the frequency domain, enabling the modeling of long-range dependencies. The FNO
component applies Fourier transforms: Ĥ(l−1) = F

(
H(l−1)

)
, where H(l−1) ∈ RN×dl−1 and F

denotes the discrete Fourier transform. The model (spectral convolution) then learns a multi-
plication operator in the Fourier space Ĥ(l) = P̂(l) ⊙ Ĥ(l−1), where P̂(l) is a learned filter in
the frequency domain, and ⊙ denotes element-wise multiplication. After applying the inverse
Fourier transform, we obtain H

(l)
FNO = F−1

(
Ĥ(l)

)
.

Combined Update Rule The final update for node representations combines the GNO and
FNO components, where h

(l)
i,FNO is the i-th row of H(l)

FNO. This architecture enables the model
to learn from both local graph structures and global patterns.

h
(l)
i = σ

W(l)h
(l−1)
i +

∑
j∈N (i)

κ(l)(vi, vj)h
(l−1)
j + h

(l)
i,FNO

 , (3)

Training the Model The GNO model parameters—including W(l), κ(l), and P̂(l)—are learned
by minimizing a loss function over the training data. We define the loss function : L =
1
N

∑N
i=1

(
∆̂i −∆prop

i

)2
+ λ∥Θ∥2, where ∆̂i is the predicted propagated delay for flight i, ∆prop

i

is the actual propagated delay, Θ represents all trainable parameters, λ is a regularization co-
efficient. We use stochastic gradient descent-based optimizers (Adam) to minimize L, updating
parameters across multiple epochs with early stopping based on validation loss.
Calculation of delay absorption capacity (DAC) For each flight i, the DAC is computed
as DACi = Slacki−∆̂i, where Slacki is the slack time available and ∆̂i is the predicted propagated
delay. Positive DAC indicates resilience, while negative indicates vulnerability. The overall
network resilience is assessed via DACnetwork =

∑N
i=1 DACi. Flights with low or negative DACi

are critical nodes where delays are likely to propagate, informing operational decisions.

3 COMPUTATIONAL RESULTS
Dataset Description We conducted experiments using the US Flight Delay Dataset for 2016-
2020, comprising 2M flight records. The dataset includes a comprehensive set of features essen-
tial for modeling delay propagation, including temporal attributes, operational metrics, carrier
information, airport information, and various delay-related features, with specific delay causes.

Experimental setup Experiments were run on a standard CPU configuration with moni-
tored memory usage, using Python 3.10, Scikit-learn, PyTorch, PyTorch Geometric, NetworkX,
Pandas, NumPy. We evaluated several traditional models—Linear Regression, Ridge Regres-
sion, Random Forests, and Neural Networks—and compare their performance to the proposed
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Graph Neural Operators (GNOs). The model performance was evaluated using the following
metrics Mean Absolute Error: MAE = 1

Ntest

∑Ntest
i=1

∣∣∣∆̂i −∆prop
i

∣∣∣; Root Mean Square Error:

RMSE =

√
1

Ntest

∑Ntest
i=1

(
∆̂i −∆prop

i

)2
; R-squared Score: R2 = 1−

∑Ntest
i=1 (∆̂i−∆prop

i )
2∑Ntest

i=1 (∆prop
i −∆̄prop)

2 .

Table 1 summarizes the performance of each model on the test set. The GNOs model out-
performed traditional machine learning models, achieving the lowest MAE and RMSE, and the
highest R2 score. The model’s ability to capture both local interactions through the graph
structure and global patterns via the integrated FNO contributed significantly to its superior
performance. Ensemble methods like Random forests showed strong performance, indicating the
importance of capturing nonlinear relationships. Linear models had higher errors, suggesting that
delay propagation exhibits complex patterns not well captured by simple linear relationships. By
analyzing the model’s predictions and the calculated DAC, we provide actionable insights, iden-
tifying vulnerable flights (with low DAC for targeted interventions), optimizing scheduling and
resource deployment to enhance delay absorption, and reducing delay propagation contributes
to lower fuel consumption and GHG emissions, supporting sustainability goals.

Table 1 – Model Performance Comparison on Test Set

Model MAE (↓ better) RMSE (↓ better) R2 (↑ better)

Linear Regression 5.685 8.637 0.623
Ridge Regression 4.799 9.986 0.496
Random Forests 4.097 5.511 0.846
Neural Networks 4.093 5.514 0.846
GNOs 2.339 2.900 0.957

4 CONCLUSION
We propose a graph-based learning framework using graph neural operators to model delay
propagation in airline networks, integrating local and global interactions for superior predictive
accuracy. By identifying critical flights with low delay absorption capacity, our model offers
actionable insights for proactive interventions, enhancing operational efficiency, and reducing
environmental impacts through minimized delays and fuel consumption. Future work will incor-
porate stochastic modeling, real-time data integration, and external factors like weather and air
traffic control constraints to improve model robustness and practical applicability.
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