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1     INTRODUCTION 
 

Human mobility, which refers to the movement of individuals between geographical locations, 

is a topic of interest across multiple disciplines (Barbosa et al. 2018). In the past decade, high 

spatiotemporal coverage from mobile phone data has created new opportunities for human mobility 

analysis. However, this data typically has sparse temporal and lower spatial resolution compared to 

household travel surveys, along with locational uncertainty due to cell tower distribution  (Wang 

and Chen 2018). As a result, mobile phone data must first be processed to extract mobility 

information, particularly the foundational activity locations. 

Current studies typically identify activity locations through spatial correlation in mobile phone 

records. One basic approach defines a fixed spatial range, such as a 500m x 500m grid, grouping 

records within each grid as a single location (Jiang et al. 2013). However, varying activity boundaries 

can cause accuracy issues with this fixed threshold. Spatial clustering methods like DBSCAN 

adaptively group nearby records without a preset range (Huang et al. 2023), but still require careful 

tuning of parameters like search radius and minimum points. Additionally, these methods rely solely 

on spatial similarity, making it difficult to distinguish spatially close but temporally distinct activities. 

Identifying activity locations by considering both spatial and temporal proximity is promising, but 

spatiotemporal clustering methods often depend on user-defined parameters. A viable alternative is 

to transform mobile phone records into a graph-based structure that intuitively captures complex 

spatiotemporal relationships. Parameter-free graph partitioning algorithms can then identify activity 

locations based on these strong relationships within the graph. 

Therefore, this study proposes a spatiotemporal knowledge graph (STKG)-based method for 

identifying individual activity locations from mobile phone data. The STKG is constructed to 

capture individual mobility characteristics by transforming spatial and temporal relationships of 

stays into a spatiotemporal graph. A modularity-optimization community detection algorithm is then 

applied to identify stays with dense spatiotemporal connections as activity locations. A case study 

in Shanghai verifies the advantages of the proposed method. 

 

2     METHODOLOGY 
 

As shown in Figure 1, the spatiotemporal knowledge graph (STKG) based activity location 

identification method includes two steps: (1) Conceptualizing and constructing an STKG to store 

mobility-related spatiotemporal information from large-scale mobile phone data. Then, inferring 

spatial adjacency and temporal co-occurrence relationships between individual stays to expand the 

STKG. (2) Representing the spatiotemporal relationship as a spatiotemporal graph. Community 

detection algorithm is used to divide the graph into densely connected subgraphs, which are then 

mapped onto geographical locations to form activity locations. 

Firstly, after data preprocessing, the individual traces based on mobile phone data are 

represented using time slots and grids as basic analysis units in the temporal and spatial dimensions. 

Thus, an individual’s sequence of stays and movements can be represented as a spatiotemporal path 
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that shows their presence in different grid locations at various time slots. In the STKG, the 

knowledge of what an individual is doing (stay), at what time (time slot), and in what location (grid) 

can be described using triples. These triples are then stored in a graph format. 

 

 
Figure 1 – Research framework 

The spatial relationships between stays are further inferred based on the STKG. Queen 

contiguity is defined as two spatial objects being contiguous if they share one or more vertices. After 

measuring the spatial relationships between grids, spatial relationships between stays can be inferred 

through the associations between stays and grids. Let the 2D grid array be 𝐺, where each cell is 

uniquely determined by its row and column indices (𝑟, 𝑐). For a grid cell 𝐺(𝑟,𝑐), its queen contiguity 

neighbors can be represented as Equation 1: 

 𝑁(𝑟,𝑐) = {(𝑟 + 𝑎, 𝑐 + 𝑏) ∣ 𝑎, 𝑏 ∈ {−1,0,1}, (𝑎, 𝑏) ≠ (0,0)} (1) 

The co-occurrence of two stays is defined as both stays occurring within the same period. Let 

the time slots of stay1 and stay2 be represented by binary vectors 𝑨 and 𝑩, where each vector has a 

length of 144, corresponding to the 144 time slots (10 minutes each) in a day. To measure the 

temporal co-occurrence relationship between stay1 and stay2, the cosine similarity between the two 

vectors is used. This is calculated as Equation 2, where 𝑨 ⋅ 𝑩 represents the dot product of vectors 

𝑨 and 𝑩, and ∥ 𝑨 ∥ and ∥ 𝑩 ∥ represent the Euclidean norms of the vectors. 

 𝐶𝑆(𝑨,𝑩) =∥ 𝑨 ∥∥ 𝑩 ∥ 𝑨 ⋅ 𝑩 (2) 

For an individual, the graph depict temporal and spatial relationships is represented as a single 

graph using the Hadamard product, denoted as 𝑆𝑇𝐺 = 𝑆𝐺 ∘ 𝑇𝐺, where 𝑆𝐺 represents the spatial 

relationship graph, and 𝑇𝐺 represents the temporal relationship graph. Fast Unfolding algorithm is 

used to divide 𝑆𝑇𝐺 into subgraphs where nodes with dense spatiotemporal relationship. Modularity 

𝑄 is used to evaluate the quality of community partitioning, which is defined as Equation 3, where 

𝐴𝑖𝑗  is the weight of the edge between nodes 𝑖 and 𝑗, 𝑘𝑖  is the strength of node 𝑖. 𝛿(𝐶𝑖, 𝐶𝑗) is the 

Kronecker delta, equal to 1 if nodes 𝑖 and 𝑗 belong to the same community (𝐶𝑖 = 𝐶𝑗) and 0 otherwise. 

𝐶𝑖 is the community assignment of node 𝑖. 
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The modularity gain 𝛥𝑄 is calculated as Equation 4, where 𝑊𝑖𝑛 is the total weight of the edges inside 

community 𝐶𝑗, 𝑊𝑡𝑜𝑡 is the total weight of the edges connected to nodes in community 𝐶𝑗, 𝑘𝑖 is the 

degree (total weight of edges) of node 𝑖, 𝑘𝑖
𝑖𝑛 is the sum of the weights of edges from node 𝑖 to nodes 

in community 𝐶𝑗.  
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The community detection helps identify meaningful communities within the graph, grouping 

stays that exhibit strong spatiotemporal correlations into clusters. By mapping stays that belong to 

the same community onto geographical locations, one can derive individual activity locations. 

 

3     RESULTS 
 

To evaluate activity location identification methods spatially, we calculated the cluster radius 

for all activity locations, as shown in Figure 2(a). For locations identified by the spatial-constraint-

based method, cluster radii were generally below 1500 meters, with most under 1000 meters. Using 

1000 meters as a threshold, we found that 83% of activity locations from the STKG-based method 

and 93% from the non-spatial-constraint method fell below this threshold, indicating that the STKG-

based method, by considering temporal correlation, achieves 10% greater accuracy. We further 

analyzed the cluster radius for each user’s primary daytime activity location, as shown in Figure 

2(b). Results indicate a more significant advantage for the STKG-based method over the non-spatial-

constraint method. While the non-spatial-constraint method may require parameter adjustments to 

increase the proportion of locations within a 1000-meter radius, the STKG-based method can contain 

an additional 45% of daytime hotspots within this range without parameter changes.  

 
(a) All activity locations 

 
(b) Activity locations with the longest 

daytime stay for each user 

Figure 2 – Radius of activity locations 

To evaluate activity location identification methods temporally, two indicators are used: the 

variance of start and end times for activities at the same location on different days and the frequency 

of days work activities are observed. As shown in Figure 3, we calculated the start and end time 

variance at the location with the longest daytime stay (potentially the workplace). The STKG-based 

method outperforms baseline methods, maintaining 10–20% lower variance. 

Figure 4 shows the joint distribution of start time variance and workday frequency at these 

locations. The spatial-constraint method identifies more workdays (8–12 days) than the non-spatial-

constraint method (4–8 days), though their start time variance is similar (around 4 hours). In contrast, 

the STKG-based method has high-density values in regions with more observed workdays (13–15 
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days) and lower start time variance (around 2 hours), indicating strong regularity and stability in 

identified activity locations. 

 
(a) Variance of activity start time 

 
(b) Variance of activity end time 

Figure 3 – Variance in start and end times of activities with the longest daytime stay 

 
(a) Spatial-constraint-based 

method 

 
(b) Non-spatial-constraint 

method 

 
(c) STKG-based method 

Figure 4 – Joint distribution of variance in start times of activities with the longest daytime 

stay and the number of days these activities are observable 

 

4     CONCLUSION 
 
This study introduces an STKG-based method for identifying individual activity locations from 

mobile phone data. The STKG models mobility patterns by integrating spatial and temporal 

connections between stays, forming a spatiotemporal graph. A modularity-optimization algorithm 

then detects dense spatiotemporal clusters as activity locations. A Shanghai case study validates the 

effectiveness of proposed method. Future work will involve recruiting volunteers to compare passive 

mobile phone-based location identification with actively collected activity data for further validation. 
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