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1 Introduction
The global rise in carbon emissions remains a pressing environmental issue, driven significantly by

the transportation sector, which is now the third-largest source of greenhouse gas (GHG) emissions (Sun
et al., 2021). Bike-sharing systems (BSS), have emerged as a key sustainable transportation mode to
mitigate urban congestion and emissions. Currently, BSS are experiencing rapid growth. In 2023, total
Bike-sharing trips in North America increased by 20%, surpassing the pre-pandemic peak recorded in
2019 (NACTO, 2023).

However, BSS often struggle with capacity imbalances, leaving substantial unmet demand. Users
frequently encounter shortages of available bikes and docks, creating "unmet demand". While observed
data can record the origin-destination (OD) of each bike-sharing trip, it fails to capture the number of
users who fail to pick up or drop off bikes, resulting in decreased utilization rates of BSS. Consequently,
existing research focusing on BSS optimization and prediction relies solely on observed demand data
and overlooks unmet demand. This limitation leads to inaccurate OD demand estimates and suboptimal
operations. Thus, identifying unmet demand is crucial for the sustainable growth of bike-sharing systems.

Considering the difficulty of directly determining unmet demand, our study innovatively develops a
new model to estimate the actual demand pattern, by mining the mathematical distribution of observed
data. Then, unmet demand can be identified by comparing the discrepancies between actual and observed
demand. Therefore, the primary objective of our research is to estimate the new indicators: the trip oc-
currence probabilities, (λmi,j , j = 1, 2, ..., S), which can reflect the true demand. We conceptualize the
event: "During the mth hour, the user arriving at Origin Station i chooses the Destination Station j from
S Stations" as an experiment following a multinomial distribution. In this context, the trip occurrence
probabilities, λmi,j , serve as fixed parameters of the multinomial distribution, reflecting the fundamental
demand of users, which remains unaffected by equipment shortages. However, λmi,j is a high-dimensional
tensor with time-varying patterns, making it almost impossible to solve using conventional statistical
methods. To extract this parameter, the proposed innovative model integrates a Bayesian Gaussian de-
composition framework and employs Markov Chain Monte Carlo (MCMC) methods—specifically, Gibbs
Sampling and Elliptical Slice Sampling—for parameter estimation, which will be introduced in Section 2.

2 Methodology: Bayesian Gaussian Decomposition
2.1 Problem Definition: Multinomial Distribution Framework

Assuming there are S bike-sharing stations and M time units, the tensor representing the observed
origin-destination (OD) trips, denoted as Y, has dimensions S × S ×M . Given a specific origin station
i, the choice of destination stations follows a multinomial probabilistic pattern characterized by a set of
probabilities. Specifically, let λm

i = (λmi,1, λ
m
i,2, . . . , λ

m
i,S) represent the probability distribution over the S

possible destination stations during the mth time unit. The number of trips ym
i taken from the origin i

to each destination j, where j = 1, 2, . . . , S, can then be described by a multinomial distribution:

ym
i ∼ Multinomial(nmi ,λ

m
i ), P (ym

i | λm
i ) = nmi !

S∏
j=1

(
λmi,j

)ym
i,j

ymi,j !
(1)

where nmi denotes the total trips generating from Origin Stations i during themth time unit. Now, we shift
the crux of the problem from predicting the observed Y to estimating the trip occurrence probabilities
λ, where λ ∈ RS×S×M .
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2.2 Model Structure: Tensor Decomposition with Latent Gaussian process
Since λmi reflects the endogenous mode of human behavior in utilizing the bike-sharing system, general

sampling methods are inadequate for capturing its temporal dynamics. To ensure the two properties of
λmi , namely being a probability vector and exhibiting time-varying nature, we combine natural Softmax
parameterization with a Gaussian Process to estimate λmi . Thus, we can summarize the research structure
as shown in Fig 1.

Figure 1 – Research Structure

Softmax parameterization can effectively convert the output elements into a probability vector that
respects the constraint that all elements sum to one. The function is as follows:

λm
i = Softmax(ρGm

i ) =


exp(ρGm

i,1−max(ρGm
i ))∑S

j=1 exp(ρGm
i,j)

...
exp(ρGm

i,S−max(ρGm
i ))

1+
∑S

j=1 exp(ρGn
i,j)

 , (2)

where Gm
i =

(
Gm

i,1, G
m
i,2, . . . , G

m
i,S

)⊤ ∈ RS , and ρ > 0 is the temperature parameter, which is used to
control the smoothness of the output probabilities.

To capture the time-varying nature of these distributions after applying the softmax parameterization,
we introduce a Gaussian Process to model the temporal dynamics and spatial correlations. The temporal
evolution of Gi is represented as Gm

i | Gm−1
i ∼ N (Gm−1

i , σ2I). However, the high dimensionality
of G ∈ RS×S×M poses significant challenges for finding the optimal solution, although computing the
likelihood of the multinomial distribution remains feasible. To address this, we reduce the dimensionality
of G by transforming it from a tensor into a matrix:

G =

G1

...
GS

 =

Φ1

...
ΦS

×Ψ⊤ = ΦΨ⊤, where Gi = ΦiΨ
⊤ =

D∑
d=1

ϕi,dψ
⊤
d , (3)

where Φ denotes the mapping factor matrix and Ψ denotes the temporal factor matrix, Φi ∈ RS×D and
Ψd ∈ RN×D. The low-rank assumption implies that D ≪ M and D ≪ S × S, thereby significantly
reducing the number of parameters through the factorization of G.

To capture the temporal dynamic smoothness, we assume that each column ψd of the temporal matrix
Ψ is governed by a latent Gaussian process (Hall et al., 2008). We select the squared exponential kernel as
the kernel function for each column ψd. The SE kernel provides a continuous representation of temporal
variations, which does not impose a strict assumption on the temporal dynamics. The functions of Latent
Gaussian Process on temporal matrix Ψ are defined as follows:

ψd ∼ N (0M,Kd), [Kd]i,j = kd(ti, tj ; l, σ
2) = σ2 exp

(
− (ti − tj)

2

2l2

)
(4)

where, l and σ2 are the hyperparameters representing the lengthscale and variance, respectively.
Additionally, spatial correlations may be present in bike-sharing systems, closer stations may have similar
distribution. Consequently, for each vector column ϕi,d, we can also set:

ϕi,d ∼ N (0N, [Ki,d]i,j) , [Ki,d]i,j = kd(xi,xj ; l, σ
2) = σ2 exp

(
−∥xi − xj∥2

2l2

)
(5)
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where ∥xi − xj∥ denotes the Euclidean distance between spatial locations xi for bike-sharing station i
and xj for bike-sharing station j. To ensure the positivity of the temperature parameter ρ, we model it
using its log-transformed value. Specifically, we assign a Gaussian prior to log(ρ) by log(ρ) ∼ N (µρ, σ

2
ρ),

where µρ and σ2
ρ are scalar hyperparameters.

2.3 Algorithm: Gibbs sampling and Elliptical Slice sampling
Based on the Bayesian Gaussian Decomposition model, we utilize Bayesian inference to determine the

posterior distributions of the parameters λ. The parameters of interest in the posterior distribution are
denoted by Θ = {Φ,Ψ, ρ}. The posterior distribution p(Θ | Y, t) is proportional to the product of the
prior distribution and the likelihood function, as expressed by:

p(Θ | Y, t) ∝ p(Θ | t) p(Y | Θ) ∝ p(Θ | t)
M∏

m=1

p(ym | Θ). (6)

For complex models, this posterior distribution is often intractable to compute directly. Therefore,
we employ Gibbs sampling, which is a specific MCMC method, which simplifies the sampling process
by iteratively sampling each parameter from its conditional distribution, given the current values of the
other parameters and the observed data (Gelfand, 2000).

Considering the high dimensionality of ψd and ϕi,d, we select Elliptical Slice Sampling (ESS) as their
sampling algorithm, which can handle the complexity of high-dimensional parameter spaces without
requiring gradient information (Murray et al., 2010), as shown in Algorithm 1. Given that the temperature
factor ρ is a scalar, we utilize Slice Sampling to iteratively generate samples. The likelihood L(ψd) can
be calculated as follows.

L(ψd) = p(Y | Φ,Ψ, ρ) =
N∏

n=1

p(yn | λn), (7)

Algorithm 1 Elliptical slice sampling for each column ψd of factor matrix Ψ.
Require: Current state ψd, covariance matrix Kd, likelihood function L(ψd)
Ensure: a new state ψ′

d
1: Choose ellipse: ν ∼ N (0M ,Kd)
2: Log-likelihood threshold: γ ∼ Uniform[0, 1], log c = logL(ψd) + log γ
3: Draw an initial sampling range: θ ∼ Uniform[0, 2π], θmin = θ − 2π, θmax = θ
4: ψ′

d = ψd cos θ + ν sin θ
5: if logL(ψ′

d) > log c then
6: return ψ′

d
7: else
8: Shrink the sampling range and try a new point:
9: if θ ≤ 0 then

10: θmin = θ
11: else
12: θmax = θ
13: end if
14: θ ∼ Uniform[θmin, θmax]
15: Go to Step 4.
16: end if

3 Experiments and Results
Based on the Bayesian Gaussian Decomposition model, we utilized the OD trip data from Montreal’s

BIXI bike-sharing system to conduct experiments. We selected the data in August 2023 and set a bi-hourly
time interval. Since BIXI station locations frequently change, we divided the map of Montreal into a grid
with cell dimensions of 500 x 500 meters, resulting in 420 grid cells containing BIXI bike-sharing stations
(Y ∈ R420×420×84). According to the pre-experiment, we set σ2

0 , σ
2
p = 1 and µp = ln(0.1). Through

multiple experiments, we found that a low-rank setting of 6 achieved the maximum log-likelihood and
optimal performance, as shown in Fig 2.
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Figure 2 – Performance comparison of different low rank (Right: Comparison of log-likelihoods during 10000
iterations; Left: Comparison of mean log-likelihood over the last 2000 iterations).
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Figure 3 displays the results for the temporal vector ψd from the last 200 samples of the 10,000-iteration
sampling process. Each temporal vector demonstrates a clear daily cyclic pattern, despite no periodic
constraints in the Gaussian Kernel. This outcome indicates that our model accurately auto-captures the
fundamental demand patterns and temporal dynamics across the bike-sharing network.

Figure 3 – Value of Temporal Matrix Ψ (D = 6)
We randomly selected Cluster 1 as origins to analyze the distribution of λ (Figure 4). The observed

OD trip data Y is highly scattered and sparse, making it difficult to identify clear dynamic patterns or
latent demand, suggesting that Y may not fully reflect the true OD demand. In contrast, our proposed
model extracts potential dynamic patterns from Y, offering a clearer representation of demand under
ideal conditions. The temporal distribution of λ for trips from fixed origins follows specific patterns
influenced by the six time vectors ψd.

Figure 4 – Comparison of observed trip rates and estimated trip occurrence probabilities λ

Finally, after comparing the actual demand λ and observed demand Y , we conduct the unmet demand
analysis as shown in Figure 5. The results shows that high-demand origin clusters are radially distributed
from the city center, indicating a bike shortage despite existing infrastructure. Unmet demand is most
prominent in the city center, extending southward, mainly during peak hours (7:00–9:00 AM, 5:00–7:00
PM). These findings validate the model’s effectiveness, with future research incorporating urban planning
data for deeper insights.
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Figure 5 – Spatial distribution of latent demand (Left: Spatial distribution of origins with the highest unmet
demand, Middle: Top 100 OD pairs most likely to exhibit unment demand, Right: Temporal distribution of unmet
demand).
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