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1 INTRODUCTION

On-demand mobility systems consist of a fleet of vehicles that operate to serve travel requests
arising during the day. One field of research related to these systems focuses on the design
of operational strategies and evaluating them in realistic settings using agent-based mobility
simulation tools (Jing et al., 2020).

The core of the operation of on-demand systems lies in the dispatch algorithm, deciding
which vehicle to allocate to which travel request. Most algorithms in the literature strictly aim
at maximizing the number of transported passengers while minimizing the costs. Moreover, the
common simulation setup assumes homogeneous users. Their interactions with the service are
all simulated in the same way, which, in turn, avoids considering the potential discriminatory
behavior that algorithms could show when deployed in a real-life system.

In this work, we study the discriminatory behavior of an insertion-based dispatch algorithm
that is broadly used in the literature. We then propose and evaluate mitigation measures. These
experiments are built using the MATSim agent-based mobility simulator Horni et al. (2016).

2 METHODOLOGY

2.1 Investigated dispatch algorithm

This work focuses on the DRT algorithm (Bischoff et al., 2019). It is an insertion-based algorithm
in which requests are processed in every simulated second of a day in their order of arrival. For
new each request, the algorithm tries to insert new pickup and dropoff stops into the schedules
of the fleet vehicles. Those contain the pickup and dropoff locations of already assigned requests.
An insertion is a combination of a pickup and a dropoff index on the sequence of existing
actions of the vehicle. For each insertion, it is checked whether neither the pickup time nor
the dropoff time of any already assigned request would be shifted beyond promised thresholds,
determined respectively by the maximum wait time (fixed to 10 minutes in this study) and the
latest arrival time. If no insertion that fulfills these conditions exists, the new request is rejected.
Otherwise, one insertion is chosen that causes the least additional drive time for the vehicle fleet.
Furthermore, we use MATSim’s recent prebooking functionality (Hörl et al., 2024) to have all
requests submitted five minutes in advance of their planned departure time.
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Figure 1 – Assessment of rejection rates for regular and special users in the baseline case.

2.2 Special users and demand scenarios

The time required by the users for pickup and dropoff is considered by DRT when scheduling the
vehicle stops. Here, we consider that pickup and dropoff durations are the same for each request,
and we call them interaction time. In most simulations in the literature with homogeneous users,
all requests have the same interaction time. This assumption is relaxed here by considering,
besides regular users with an interaction time of 30s, the presence of special user types that have
different interaction time configurations. We study three types of special users. Individuals
with mobility challenges (IMC) refers to users that have special constraints when interacting
with a vehicle, causing a higher interaction time of 240s. They represent, for instance, users with
wheelchairs. Two-person groups (2P) and Three-person groups (3P) have an interaction
time of 60s and 90s, respectively, and require the insertion of two and three persons, respectively,
in the same vehicle at the same time. They represent, for instance, parents with children.

Our baseline demand scenario first reflects the state of the literature where all users are
regular. Then, each of the three special types is separately added to represent a certain share of
users (5%, 10%, 100%). The 100% share allows studying the behavior of the algorithm in the
extreme case where all users have the same, but higher than the baseline, interaction time.

2.3 Mitigation strategies

We explore two methods to prevent the algorithm from discriminating against special users.
The User Agnostic Scheduling (UAS) strategy makes the algorithm unaware of the actual
interaction time of a specific request, which is not true in the baseline case. A parametrizable
user agnostic interaction time is assumed instead (30s and 240s in the experiments below).
The Targeted Planning (TP) strategy explicitly favors special requests by allowing them to
send the trip requests earlier than other users, such that their requests can be scheduled with
preference. The strategy is parametrized by the targeted planning horizon (10 to 30 minutes).

2.4 Fleet simulation

Our simulation experiments are conducted using synthetic travel demand data for the city of
Paris (Hörl & Balac, 2021), by targeting 10% of the bus trips that take place in the city. This
results in 50k daily requests. Fleet sizes ranging up to 600 vehicles were tested for serving the
regular demand, yielding three configurations of interest. The Constrained fleet (150 vehicles)
rejects 37% of requests throughout the day, the Tight fleet (300 vehicles) rejects 5%, mostly
during peak times, and the Large fleet (550 vehicles) serves the whole baseline demand.
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Figure 2 – Rejection rates observed under the application of the UAS mitigation strategy.

3 RESULTS

To test for discriminatory behavior of the algorithm, simulations for all fleet configurations
combined with introducing each special user types separately, at a certain rate, are conducted.
Figure 1 shows the observed rejection rates. The demand is characterized by the plot columns
(share of special requests) and the color (type of special) requests. Each group of bars represents
a fleet configuration, and the bar shades allow comparing between regular and special requests.
From the height of the rejection rates, one can see that the algorithm yields substantially higher
rejection rates for special users. The algorithm, hence, shows discriminatory behavior, and even
at a Large fleet for IMR requests.

In the following, the potential of the two mitigation strategies is assessed. Figure 2 shows the
rejection rates observed when applying UAS. The special request scenarios are now arranged
in rows, while colors represent different user agnostic interaction times. The actual case shows
the baseline, with each request being treated with its specific interaction time. In the case of a
user agnostic interaction time of 30s, the algorithm is prevented from considering explicitly the
higher interaction time of special requests. This leads to a slight decrease of their rejection rate,
with the largest effect in a Constrained fleet for IMC requests. However, unexpected delays are
introduced, which also lead to slight increases for regular requests. When 240s of interaction
time are assumed for all requests, special requests equally benefit, but rejection rates of regular
requests are heavily increased, indicating less optimal exploitation of the system.

For TP, Figure 3 shows the results when varying the targeted planning horizon H with 5
minutes representing the baseline. The solid and dashed lines compare between regular and
special requests, while the plot rows indicate their type. We notice that the rejection rate for
special requests decreases as H increases, and that a value H > 10min is sufficient to a lower
their rejection rates even below those of regular requests. For the Tight fleet, 10min are enough
to achieve a near-zero rejection rate. With the Constrained fleet, 2P and 3P are nearly fully
served from H = 15min whereas H ≥ 20min is needed for IMC requests.
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Figure 3 – Rejection rates observed under the application of the TP mitigation strategy

4 CONCLUSION

Our results exemplify how to uncover algorithmic discrimination in fleet management algorithms
and explore the potential of two mitigation strategies. We show that fine-tuning the strategies
to the specific use case is necessary, and that simulation-based analyses can help in doing so.

The practical implications of the tested strategies need further discussion in future work.
The UAS strategy may imply forcing the operator to comply with nondiscriminatory regulation
that lowers its global performance. On the other hand, the TP strategy puts the burden on the
concerned user groups to plan their travels further in advance than others.

The strategies proposed here do not rely on structural changes in the algorithms, a pathway
that has been followed in literature (Chouaki & Hörl, 2024). Our goal for future research is
to map discriminatory behavior over various fleet management algorithms and propose a larger
series of mitigation mechanisms.
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