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1 INTRODUCTION

Rapid urban transportation and delivery demand and relevant resource constraints have driven
the need for more efficient vehicle utilization. An innovative concept, “Vehicle-based Multi-
Services” (VeMuS), is a service model in which a single vehicle offers multiple services simulta-
neously in an urban mobility system. Similarly, “Vehicle-based Dual Services” (VeDuS) refers to
a vehicle that provides two services simultaneously (Sun et al., 2023).

This study considers the order dispatching problem for the most common dual services,
in which a vehicle simultaneously provides parcel delivery and passenger mobility. The demand
profile for parcel delivery orders is known in advance, whereas passenger transport orders dynami-
cally arrive in real time. There are two primary strategies for dispatching these orders to vehicles.
The first, the group-and-match (GM) strategy, is commonly used in on-demand ridesharing ser-
vices. Passenger and parcel orders with similar itineraries are grouped and matched to vehicles.
It leverages the bipartite structure between orders (both parcels and passengers) and vehicles
and formulates order dispatching as an online matching problem (Lyu et al., 2024). The second,
the route-then-insert (RI) strategy, first generates initial routes for early-arriving orders (parcels)
and then inserts dynamically arriving orders (passengers) during operations. Initial routes save
computational cost in real-time large-scale decisions (Jaillet et al., 2016).

Selection of a well-designed order-dispatching strategy can enhance service quality and re-
source utilization. However, this involves trade-offs between multiple objectives, complex con-
straints, service prioritization design, and expensive computational costs. Although many studies
and practitioners adopt certain variants of either the GM or RI strategy in on-demand trans-
portation, their performance and implications for VeDuS have not been compared. This study
investigates order-dispatching strategies for VeDuS and explores how various factors influence
their performance. Practical suggestions and valuable insights are provided.

2 PROBLEM STATEMENT

Without loss of generality, we make the following assumptions. (i) Demand: Parcel orders are
known in advance, and passenger orders are dynamically requested in real time. Passenger orders
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typically yield higher revenue and have tighter time constraints compared with parcel orders. (ii)
Simultaneous service: One passenger order and several parcel orders can share a vehicle with
capacity constraints. Two passenger orders cannot share a vehicle space, and this assumption
can be relaxed in a more general model.

We consider a fleet of vehicles K with capacity @Q to serve two types of orders. Let O, be a
set of parcel orders and Oy be a set of passenger orders. An order o € O, Uy consists of a tuple
(1e, lg, Up, To s Tg , Aoy Cos Do), Where [% denotes pickup location, lg dropoff location, u, request time,
7% latest pickup time, 70 latest dropoff time, )\, capacity occupancy, ¢, revenue for serving the
order, and p, penalty for cancellation. For passenger orders, u, > 0, 7 reflects the maximum
waiting time and 70 reflects maximum detour restrictions. For parcel orders, u, = 0, and the
value of 7% — u,, 70 — u, are longer than that of passenger orders. Passenger orders have higher
revenues and penalties than those for parcel orders.

Two phases of decision-making are considered: a planning phase and an operational phase.
For uniformity, we use a finite discrete decision epoch 7 = {0, 1,2, ..., tend}, where t = 0 is the
planning phase and ¢ € {1,2, ..., tend} is the operational phase with a fixed time interval tA. In
each epoch t € T, a set of parcel orders O,(t = 0) and passenger orders {o € Og:t—1<u, <
t}(t > 1) are placed and added to unassigned orders set S; and St, respectively. 'We need to
dispatch order 0 € S; US; to a vehicle k € K or postpone it to the next epoch t + 1. The set of
unassigned orders become 3; and 3; after dispatching. The reward in each epoch ¢ is captured
by a complex incremental revenue RS as follows:
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The system gains the reward from (a) revenue of served orders, minus (b) penalties for orders
that exceed the latest pickup time, (c) penalties on passenger detour, (d) penalties on passenger
waiting time, and (e) changes in travel distance costs for vehicles. The objective is to maximize
the total reward Y, .+ R in the entire time period.

While it is easy to use a binary variable 2!, to indicate whether an order o is dispatched to
vehicle k in epoch ¢, the decision entails two challenges: (1) complex trade-offs between services
for the two types of orders and (2) complex constraints in construction of the route—e.g., time
and load constraints. For the GM and RI strategies:

e The group-and-match (GM) strategy makes dispatching decisions only in the operational
phase Vt € {1,2,...,t"} in which parcel and passenger orders with similar itineraries are
grouped and matched to vehicles. This approach reduces computational requirements by limiting
the number of orders considered in each epoch.

e The route-then-insert (RI) strategy generates initial routes for parcel orders in ¢ = 0 in
the planning phase, then dynamically inserts passenger orders to routes in the operational phase
vt € {1,2, ...,tend}. This approach demands computational efforts for the initial routes in the
planning phase, which offers computational efficiency for the operational phase.

3 SOLUTION APPROACH

3.1 Group-and-match strategy

Define an order group as a subset of unserveEi O{ders in S; and 5} at ealch epoch_t. TEIG set of
all possible order groups is defined as G = {(Sg4, Sy)| Zoesguég Ao < Q, |8yl < 1,VS5, C &, VS, C
Q

S;}. The maximum number of candidate order groups is |G| ~ O(|S||S;|™™ <5 *). For an
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B e 3, (t¢ —up) — D;‘k as the revenue of dispatching group ¢ to vehicle k. The match between
order groups and vehicles can be formulated as a linear integer programming as follows:

max » Y cgrtigh — > PoXo (2)

order group g € G and a vehicle k € K, we denote cg, = Zoeéguég Co — O‘Zoeég(

keK geg 0€SUS:Ta <t +1
s.t. ~

Y gt xe=1LYoeSUS, (3)

ke geg,0eS,US,
> yp <1Vgeg (4)

kek
> Y <1LVEEK (5)

geg
ygr € {0,1},Vg € G,Vk € K, (6)
Xo € {0,1}7v0€StUS~t, (7)

The objective function (2) maximizes total revenue while penalizing unserved orders. Con-
straints (3) ensure that each order is assigned to one group or postponed to the next epoch.
Constraints (4) ensure that each group is assigned to at most one vehicle. Constraints (5) ensure
that each vehicle is assigned to at most one order group. yg; indicates whether order group g is
assigned to vehicle k; x, indicates whether order o is postponed.

3.2 Route-then-insert strategy

In the RI strategy, in each epoch ¢, we can maximize incremental revenue RtA in Eq. (1) since
it increases revenue and reduces penalties and costs. Let binary decision variable zfj denote
whether vehicle & moves from node i to node j. The insert and (re)routing problem at each
epoch can be formulated as a dial-a-ride problem, which is often solved by heuristics due to large
problem complexity and fast-computation requirement in the operational phase.

Both the initial routing and dynamic insertion can be solved via an adaptive large neigh-
borhood search (ALNS) method. In the planning phase, ALNS can provide high-quality initial
routes for parcel orders. In the operational phase, ALNS takes the initial routes as a warm start
for the insertion decisions. Technically, ALNS can employ multiple destroy and repair operators,
with each assigned a weight that is dynamically adjusted based on its performance during the
iteration. We highlight the fact that ALNS can also remove unserved parcel orders from routes
in the dynamic insertion process. Selection of the operator uses a roulette mechanism: Operators
that performed well in previous iterations are more likely to be chosen in subsequent iterations.
Newly generated solutions are accepted based on a simulated annealing mechanism. Once a
maximum running time is reached, the ALNS stops and returns the routes.

4 NUMERICAL STUDY

The numerical study simulates a fleet of 10 vehicles operating within a 20 km x 20 km area
in three hours with a 5-minute time interval. The pickup and drop-off points of an order are
generated around different centers with 1 km standard deviation (see Figure 1). For scenarios
with varying demand levels (Low: 20; Medium: 50; High: 100) and ratios of passenger orders
(from 20 % to 80 % with an interval of 10 %), GM and RI strategies are implemented and
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evaluated in five instances per scenario. In Figure 2, the y-axis is the reward of the GM strategy
R over the reward of the Rl strategy Rgr. A value greater than 1 indicates better performance
by the GM strategy. Results show similar performance of GM and RI under low demand levels,
but significant differences under high demand levels: GM performs well at low passenger ratios,
while RI excels at high passenger ratios. Figure 3 shows the performance of 3 specific instances
based on 5 metrics: parcel service rate, passenger service rate, average travel distance for both
parcels and passengers, average waiting time for passengers, and average detour for passengers.
It shows that GM fulfills most parcel orders, while RI achieves a better passenger service rate,
despite longer waiting times. We also conduct a sensitive analysis of the deviation of the spatial
distribution but do not observe any clear patterns. The performance factors can be attributed to
the computational complexity and how to anticipate passenger demand: RI offers more flexible
insertion than GM, making it more efficient in scenarios with a high passenger ratio.

In the full version of the paper, we will include a literature review, details on the prob-
lem statement and two strategies, propositions under specific cases, numerical experiments on
different factors (vehicle capacity, types of parcel, etc.), and discussions of performance.
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Figure 3 — Performance in 3 instances: (a) Low demand level, passenger ratio 20%; (b) High
demand level, passenger ratio 20%; (c) High demand level, passenger ratio 80%
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