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1 Introduction

In many on-demand mobility and delivery platforms, both jobs and workers (strategic agents) are
spatially distributed, often leading to mismatches that cause inefficiencies. Previous research has
largely focused on dynamic pricing to address supply-demand mismatches (see Wang & Yang
(2019) for a comprehensive review). However, platforms also possess valuable demand data,
which they use to guide worker decisions through shared (often partial) information. For instance,
both Uber and Lyft use heatmaps to display demand intensity. Despite its practical importance,
the role of information design in influencing strategic agent repositioning has received limited
attention. Our work introduces a game theory model to study how platforms can leverage demand
data to influence worker repositioning and maximize their objectives. We show that, in many
relevant cases, a simple monotone partitional information policy is optimal. This policy fully
discloses demand states below a lower threshold and above a higher threshold, while concealing
demand levels that fall between the two thresholds. We also develop algorithms to determine
(near-)optimal monotone partitional structures and apply our model to data from Manhattan’s
ride-hailing market, demonstrating the effectiveness of the optimal information mechanism.

2 Model and preliminaries

Networks and agents. We consider a network with a set of nodes V and nonatomic agent
populations distributed across nodes i ∈ V with mass vector m = (mi)i∈V . The agent population
at each node i decides if they stay at their origin node or reposition to another node j with
repositioning cost cij ≥ 0. Agents’ strategy distribution is x = (xij)i,j∈V , where xij is the
mass of agents who move from i to j. A repositioning strategy distribution x ∈ X is feasible if∑

j∈V xij = mi for all i ∈ V and x ≥ 0. The distribution of agents induced by x is qi =
∑

j∈V xji
for all i ∈ V . The service price at node i is a linear function pi(qi) = si − βiqi for all i ∈ V ,
where si ≥ 0 is the market size at node i, and βi ≥ 0 is the price elasticity. This linear price
function can be generalized to piecewise linear function. For every transaction, the platform
collects commission with a fixed rate r ∈ [0, 1]. Thus, the payoff received by an individual agent
is (1−r)pi(qi), and the total commission (i.e. revenue) collected by the platform at i is rpi(qi)qi.

One node 0 experiences demand shock that affects the market size s0. The state of the
network is the the realized market sizes s0 ∈ S0, where S0 is a continuous and closed interval of
R. The cumulative distribution of the state, referred as the prior, is F : S0 → [0, 1]. The prior
F is common knowledge. The platform observes the realization s, but the agents do not.
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Platform’s information design problem. The platform designs a public information pro-
vision mechanism (T , π), where T is the set of possible signal realizations, and π(·|s0) is the
probability density function of signal realization given state s0. The state and the signal sets are
both continuous. After observing the state s, the platform generates a signal t according to π(·|s0)
and sends the signal to all agents. After receiving signal t, agents compute the expected value of
the state E[s|t], and make repositioning decisions based on the received signal, i.e. the strategy
distribution x(t) : T → X. The utility of agents who reposition from i to j equals to the expected
payoff received at node j minus the repositioning cost cij : uij(x|t) = (1−r)(E[sj |t]−βjqj(t))−cij .
Agents are self-interested in that their repositioning decisions to maximize their expected utility.

Definition 1 For any t ∈ T , a strategy profile x∗(t) is a Wardrop equilibrium if

x∗ij(t) > 0, ⇒ uij(x
∗|t) ≥ uij′(x

∗|t), ∀j, j′ ∈ V, ∀i ∈ V.

The objective function of the platform given state s and signal t is R(s, q∗(t)). The goal of
the platform is to design the optimal information mechanism (T , π) to maximize their expected
objective value given agents’ equilibrium strategy:

max
T ,π

∫
s∈S

∫
t∈T

R(s, q∗(t))π(t|s)dF (s)dt. (1)

Potential function of the repositioning game. To solve (1), we first need to compute Nash
equilibrium of the repositioning game given a signal realization. We show that the repositioning
game is a potential game, and x∗(t) can be computed as the maximizer of a potential function.

Proposition 1 For any t ∈ T , x∗(t) is an optimal solution of the following convex program:

max
x∈X

(1− r)
∑
i∈V

∫ qi(t)

0
(E[si|t]− βjz)dz −

∑
i,j∈V

cijxij(t), s.t. x(t) ∈ X. (2)

Equilibrium distribution q∗(t) is unique for all t ∈ T , and depends on t only through E[s|t].

Proposition 1 allows us to compute equilibrium given an information mechanism, and shows that
equilibrium outcome depends on the signal t only through the induced posterior mean E[s|t].

3 Simple yet optimal information mechanisms

In this section, we focus on identifying the conditions under which optimal information mech-
anism has a simple partitional structure, referred as monotone partitional. Such mechanism
involves partitioning the state space into intervals, and within each interval, the information
mechanism either (i) fully reveals the state realization or (ii) only provides information indicat-
ing that the realized state falls within that specific interval. To better demonstrate the intuition
and practical implications, we first present our results under two assumptions: (i) The platform’s
objective function is its total revenue R(s, q∗(t)) =

∑
i∈V rq∗i (t)(si − βiq

∗
i (t)); (ii) Before shock

happens, all nodes have the same price so that agents have no incentive to move across nodes.
We later relax these assumptions. Under assumptions 1-2, we find that monotone partitional in-
formation mechanisms is optimal with a variety of practically relevant market size distributions,
and the optimal information mechanism can be computed efficiently.

Theorem 1 Under Assumptions (1) – (2), given any prior distribution F ,

(a) Full information realization is optimal if all nodes have similar market sizes as in (3a).

(b) There exists an optimal monotone partitional information mechanism with thresholds inf S0 ≤
z ≤ z̄ ≤ supS0 that fully reveals states s0 ≤ z and s0 ≥ z̄, and pools states s0 ∈ [z, z̄] if
market sizes are increasing as in (3b) or decreasing (3c).
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∣∣∣∣ si − sj
di − dj

∣∣∣∣ ≤ 1

1− r
, (3a)

si − sj
di − dj

>
1

1− r
, (3b)

si − sj
di − dj

< − 1

1− r
, (3c)

where di is the cost of repositioning from i to shock node 0 along the shortest path. Furthermore,
the thresholds z and z̄ can be computed in O(|V |).

The scenario of similar or monotone market sizes described in Theorem 1 are of practical
interests. In practice, the requests of ride-hailing services are often higher in regions close to the
central business districts, and decrease in regions far away from the central business districts.
In Theorem 1, case (i) corresponds to the scenario where the change of market sizes are small.
Case (ii) corresponds to the scenario where the shock happens at a node within the central
business district and affect nodes that are outside of the district, which have decreasing market
sizes relative to distances. On the other hand, case (iii) corresponds to the scenario where
the shock happens at a node that is far away from the central business district, and therefore
nodes further away have higher market sizes. Theorem 1 demonstrates that in both cases,
the optimal information mechanism fully reveals demand realization when it is above a high
threshold z̄ or below a low threshold z, and does not reveal information in between the two
thresholds. This corresponds to a very simple and practical information mechanism that sends
demand high/low alerts below or above a threshold and does not send any alert in between
the thresholds. Theorem 1 shows that such simple information mechanism is optimal regardless
of the distribution of demand shock, that is the prior F . The proof of this theorem builds
on the equilibrium characterization of our problem and verifying that the equilibrium revenue
function R(q∗) satisfies the affine closure condition, which is a sufficient condition for the optimal
information mechanism to be monotone partitional introduced in Dworczak & Martini (2019).

Generalization. We drop Assumptions 1 and 2 and allows price function to be piecewise linear
instead of being linear. In particular, we generalize our results to objective functions that include
(a) Maximizing revenue (b) Maximizing agents’ welfare that includes payment minus reposition
cost; (c) Minimizing reposition cost. The following theorem summarizes our findings:

Proposition 2 (Informal) (i) The equilibrium agent distribution q∗ and platform’s objec-
tives R as in (a) – (c) are piecewise linear functions of the posterior state mean E[s0|t].
Moreover, we have closed form expressions of q∗(E[s0|t]) and R∗(E[s0|t]) for each objective.

(ii) The optimal information mechanism can be reformulated as a convex program, and the
optimal information mechanism is monotone partitional if and only if one set of constraints
in the convex program is tight.

(iii) The optimal monotone partitional information mechanism can be computed using dynamic
programming and has a fully polynomial-time approximation scheme (FPTAS).

In Proposition 2, (i) shows that equilibrium can be fully characterized in closed form in the
general setting, and all four objective functions have piecewise linear structure. Additionally,
(ii) shows that the optimal information mechanism can be efficiently computed by a convex
program for all three objectives, and the constraint tightness in the convex program can be
used to numerically verify whether or not the optimal solution is monotone partitional. This
result builds on the piecewise linear objective functions in (i). We further elaborate the dy-
namic programming approach of approximating the optimal monotone partitional information
mechanism in (iii). To achieve an optimal partitional mechanism, we first discretize the state
set S with increments of ϵ, and index cutoffs by I. Assuming access to an oracle for evaluat-
ing the inverse function (or approximate computations), we define feasible cutoffs zi = F−1(ϵi)
for i in I, and calculate probabilities p(i, i′) = F (zi′) − F (zi), and mean objective function
R(i, i′) = R (E[s0|s0 ∈ [zi, zi′ ]) /p(i, i

′) for each interval. Finding an optimal monotone parti-
tional mechanism to maximize the expected objective function reduces to finding the best subset
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of indexes I. This can be formulated as a dynamic programming with Bellman equation:

V (ik) = max
i∈I | i<ik

{V (i) + w(i, ik)},

which yields the optimal mechanism as an FPTAS due to the polynomial-time complexity in 1/ϵ.

4 Numerical experiments

We calibrate our model using the For-Hire Vehicle Trip Records in Manhattan from 7-8 pm on
all workdays in 2022. We construct a linear regression model to estimate the price function as
the relationship between the per-minute passenger payment at each zone and the drivers supply.
The demand uncertainty of a zone is the residual of the linear regression.

We select the zones marked in grey in Fig. 1 (left), where the demand shock correlation
coefficient exceeds 0.8. We then construct a synthetic demand shock that affects these zones
simultaneously and estimate the prior distribution as the cumulative distribution function of
residual values from the linear regression. Based on the calibrated model, we compute the
optimal information mechanism that maximizes an objective function balancing two goals: (i)
revenue maximization R with weight wR and (ii) minimization of repositioning costs C with
weight wC . We selected one weight tuple, and illustrate the equilibrium price of each zone
induced by one signal realization generated by the optimal information mechanism in Fig. 1
(middle). In the table (Fig. 1 Right) we present the range of relative weight parameters, along
with the associated total revenue in a 15-minute time slot and the average repositioning time cost
per vehicle. We can see that as the relative weight of revenue increases, both the total revenue
and the repositioning costs also rise under the optimal information mechanism. This underscores
the trade-off the platform faces between increasing revenue and reducing drivers’ repositioning
costs. Notably, the optimal information mechanisms for all weight parameters follow a monotone
partitional structure in our experiment.

wR wC R∗ ($) C∗ (min/veh)
0.0 1.0 13281 3.27
0.1 0.9 13302 3.28
0.2 0.8 13332 3.30
0.3 0.7 13347 3.31
0.4 0.6 13386 3.36
0.5 0.5 13402 3.37
0.6 0.4 13403 3.38
0.7 0.3 13458 3.46
0.8 0.2 13719 4.14
0.9 0.1 13722 4.18
1.0 0.0 13723 4.19

Figure 1 – (Left) Zones prone to shock in grey. (Middle) Equilibrium price induced by one signal.
(Right) Pareto frontier of revenue and reposition cost in 15min under optimal information design.
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