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1 INTRODUCTION

The Traveling Salesman Problem (TSP) aims to find the shortest Hamiltonian cycle over a set
of vertices, with corresponding distances between them. The Close-Enough TSP (CETSP) is a
generalization where it is sufficient to visit a predefined compact region around each vertex. This
problem has several applications, such as radio frequency identification-based meter reading (Di
Placido et al., 2022) and unmanned aerial vehicle routing (Coutinho et al., 2016). A common
assumption in CETSP literature is that neighborhoods are disks centered at vertices (Coutinho
et al., 2016). Under this assumption, the problem can be formally defined as follows: there is a set
I of n vertices in a two-dimensional space, with corresponding coordinates ci = (cix, ciy) ∀i ∈ I.
Each vertex i is covered by a closed ball centered at ci with radius ri. It is assumed r0 = 0
so that vertex i = 0 serves as the depot. The problem consists of finding the shortest way to,
starting from the depot, visit each neighborhood and then return to the depot.

While there are multiple heuristics for finding quality solutions to the problem (Di Placido
et al., 2022), there is a notable lack of exact algorithms that find optimal solutions. Mennell
(2009) introduced the overlap ratio as a measure of problem instance difficulty, which is the
ratio between the average radius and the longest side of the smallest rectangle that contains all
neighborhoods. This metric represents how much the objective value of the problem can decrease
compared to the TSP objective value on the same vertices without neighborhoods.

This work proposes two exact formulations for CETSP, along with arbitrarily close linear
approximations. Computational results for all mentioned formulations are presented.

2 METHODOLOGY

In the arc-based formulation (ABF), the variables xij represent the transitions between neigh-
borhoods, taking the value 1 if the route moves from neighborhood i to j. The variables dij
represent the distance between representative points of the neighborhoods, and daij is an auxil-
iary variable to define the objective function. Finally, the variables pi represent the coordinates
of the representative points for each neighborhood. Given this setup, the objective function
(1) minimizes the total distance traveled, constraints (2) and (3) ensure a cycle is formed, con-
straints (4) to (6) with variable u prevent subtour formation (Gavish & Graves, 1978), constraint
(7) ensures representative points are within neighborhoods, constraint (8) defines neighborhood
distances based on representative points, and finally, constraint (9) activates daij , causing it to
equal xijdij . The parameter Mij is the maximum distance between neighborhoods, ensuring the
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constraint is trivially satisfied if xij = 0.

min
∑
i∈I

∑
j∈I

daij (1)

s.t.
∑
j∈I

xij = 1,∀i ∈ I (2)

∑
i∈I

xij = 1,∀j ∈ I (3)∑
j∈I

uij −
∑
j∈I

uji = −1, ∀i ∈ I \ {0} (4)

∑
j∈I

u0j −
∑
j∈I

uj0 = n− 1 (5)

uij ≤ (n− 1)xij , ∀i, j ∈ I × I (6)
∥pi − ci∥2 ≤ ri,∀i ∈ I (7)
∥pi − pj∥2 ≤ dij ,∀i, j ∈ I × I (8)
dij −Mij(1− xij) ≤ daij ,∀i, j ∈ I × I (9)
xij ∈ {0, 1},∀i, j ∈ I × I (10)
dij , daij ∈ R, ∀i, j ∈ I × I (11)

pi ∈ R2, ∀i ∈ I (12)
uij ∈ R≥0,∀i, j ∈ I × I (13)

In the sequence-based formulation (SBF), the variables zik indicate whether neighborhood i is
visited in stage k, qk represents the coordinates of the point visited in stage k, and tk indicates
the distance traveled in each stage. The objective function (14) minimizes the total distance,
constraint (15) ensures each neighborhood is visited in exactly one stage, constraint (16) ensures
a neighborhood is visited in each stage, constraint (17) fixes the first neighborhood as the depot
to eliminate symmetry in solutions, constraint (18) defines distances between points, and finally,
constraint (19) ensures that the representative point of stage k is within the neighborhood visited
at that stage.

min
∑
k∈N

tk (14)

s.t.
∑
k∈N

zik = 1, ∀i ∈ I (15)∑
i∈I

zik = 1,∀k ∈ N = {1, ..., |I|} (16)

z00 = 1 (17)
∥qk − qk+1∥2 ≤ tk,∀k ∈ N (18)∥∥∥∥∥∑

i∈I
zik · ci − qk

∥∥∥∥∥
2

≤
∑
i∈I

zik · ri, ∀k ∈ N (19)

zik ∈ {0, 1},∀i ∈ I, ∀k ∈ N (20)

qk ∈ R2,∀k ∈ N (21)
tk ∈ R≥0,∀k ∈ N (22)

Due to the high complexity associated with solving the previous problems, it is helpful to ap-
proximate them using linear programming. For this purpose, Ben-Tal & Nemirovski (2001)
proposed a linear approximation of cone constraints such that, given a precision ϵ and denoting
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(QCP ) as the feasible region of the original problem, (LPϵ) as the feasible region of the linear
approximation, and (QCPϵ) as the feasible region of the problem by relaxing the original cone
constraints by a factor of (1 + ϵ), it holds that (QCP ) ⊆ (LPϵ) ⊆ (QCPϵ). This means the
approximation is ϵ-close to the original problem. This precision is controlled by a parameter ν,

where ϵ(ν) =
(
cos

(
π

2ν+1

))−1
− 1. We denote LP-ABF and LP-SBF the resulting formulations.

Both approximations provide lower bounds on the objective value of the original formulations.
To obtain a feasible solution to the original problem, and thus an upper bound, one can take the
visit sequence given by the solution of LP-ABF (resp. LP-SBF), fix the binary variables in ABF
(resp. SBF), and solve for the remaining variables with second-order cone programming.

3 RESULTS

To compare the previous formulations, random instances were generated with different numbers
of vertices placed randomly within a square with a side length of 10. If an instance does not
have a uniform radius for all neighborhoods, these are also assigned randomly. Before solving,
preprocessing is performed: if one neighborhood is entirely contained within another, the latter
is eliminated, as visiting the first neighborhood trivially covers it, thus preserving optimality. All
presented instances were solved using Gurobi 10.0.1 in Python, with a time limit of 600 seconds.

Table 1 presents the results for ABF and SBF in instances of up to 15 vertices, with varied
radii. The column n indicates the number of vertices, with the number in parentheses repre-
senting the count of vertices remaining after preprocessing if vertices are eliminated. The Gap
represents the relative difference between the best upper and lower bounds, and Time denotes
the time required to solve the instance. The table shows that overlap has a significant rela-
tionship with computational time, though this effect can be offset by the higher likelihood of
vertex elimination in preprocessing with increased overlap. It is also evident that, for 10-vertex
instances, optimality is mostly reached, but as the number increases to 15 vertices, the time limit
is reached. Finally, SBF generally outperforms ABF in most instances.

Table 2 presents the results for LP-ABF and LP-SBF on the same instances, using ν = 3,
which provides an accuracy of ϵ = 0.02. This table shows that both LP-ABF and LP-SBF yield
solutions with smaller optimality gaps in less time. However, LP-ABF is outperformed by SBF in
these instances. This could be due to ABF having n2+n conic constraints, whereas SBF has only
2n. This quadratic increase in constraints makes ABF significantly more complex to solve, while
the linear programming approximation results in additional variables and constraints. Notably,
LP-SBF produces solutions with a gap of at most 1% from optimality, taking on average less than
half a minute, without requiring a high value for the approximation’s construction parameter.

Finally, we point out that Benders-like decompositions did not significantly improve perfor-
mance of any formulation, and thus we do not report results on them.

4 CONCLUDING REMARKS

The results suggest that the difference in the growth rate of the number of constraints with
respect to the number of vertices between ABF and SBF makes the second formulation and
its derivatives more computationally manageable. Promising lines for further research include
finding better decompositions to simplify ABF and SBF, methods to close the gaps in the lin-
ear approximations to guarantee optimality, and possibly decomposing these approximations to
handle larger instances.
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Table 1 – Results of ABF and SBF

n Radii Overlap ratio ABF SBF

Gap (%) Time (s) Gap (%) Time (s)

10 0.05-0.5 0.0275 0 11.3 0 9
10 0.25-1 0.0625 0 35.4 0 17.5

10(6) 0.5-2 0.125 0 0.5 0 0.9
10 0.25 0.025 0 4.3 0 12.5
10 0.5 0.05 0 16.8 0 13.6
10 1 0.1 0 82.3 0 45.9
10 1.5 0.15 54.5 600 0 80.2

10(7) 2 0.2 0 2.8 0 9.1
Average 6.8 94.2 0 23.6

15 0.05-0.5 0.0275 58.6 600 30.4 600
15 0.25-1 0.0625 75.6 600 16.4 600

15(12) 0.5-2 0.125 49.2 600 0 508.1
15 0.25 0.025 41.2 600 17.8 600
15 0.5 0.05 52 600 17.6 600
15 1 0.1 81.9 600 18.7 600
15 1.5 0.15 80.4 600 16.7 600

15(11) 2 0.2 79.6 600 0 53.2
Average 64.8 600 14.7 520.2

Table 2 – Results of LP-ABF and LP-SBF

n Radii Overlap ratio LP-ABF LP-SBF

Gap (%) Time (s) Gap (%) Time (s)

15 0.05-0.5 0.0275 0.34 37.49 0.34 35.85
15 0.25-1 0.0625 26.43 600 0.5 13.52

15(12) 0.5-2 0.125 29.6 600 0.44 2.1
15 0.25 0.025 0.72 60 0.72 22.3
15 0.5 0.05 5 600 0.97 71.9
15 1 0.1 31.5 600 1.19 46.6
15 1.5 0.15 74 600 0.8 8.6

15(11) 2 0.2 27.94 600 0.94 2
Average 24.4 529.7 0.73 25.4
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