
Dispatching and Pricing in Two-Sided Spatial Queues
Ang Xu1 and Chiwei Yan1

1Department of Industrial Engineering and Operations Research, UC Berkeley
angxu@berkeley.edu, chiwei@berkeley.edu

Extended abstract submitted for presentation at the 12th Triennial Symposium on
Transportation Analysis conference (TRISTAN XII)

June 22-27, 2025, Okinawa, Japan

February 27, 2025

Keywords: matching, pricing, ride-hailing platforms, spatial queues

1 Introduction

In recent years, ride-hailing services such as Uber, Lyft, and Didi have revolutionized urban
transportation by providing a convenient and flexible alternative to traditional taxi services.
The dispatching process, responsible for assigning available drivers to incoming ride requests, is
crucial for the operational efficiency of ride-hailing services. In designing effective dispatching
and pricing algorithms, platforms often aim to balance key objectives: keeping prices affordable,
minimizing pickup distances, and reducing rider wait times to get a match (Yan et al., 2020).

In this paper, we explore the joint dispatching and pricing problem in two-sided spatial queues
where both sides (riders and drivers) can wait in the system. This extends prior literature on
one-sided dispatching (e.g., Castillo et al. 2024, Xu et al. 2020 and Besbes et al. 2022) where
either arriving riders are immediately matched to the closest available drivers or a newly available
driver is immediately matched a waiting rider. The two-sided feature of our model is similar to
that of Wang et al. (2024), who characterize optimal dispatching by allowing intentional idling
of drivers, even when riders are waiting in the queue, using a fluid analysis. However, our
approach directly optimizes a Markovian model, enabling a more detailed stochastic analysis
and state-dependent pricing and dispatching. We summarize our contributions as follows.

• Modeling. We give a continuous-time Markovian model to depict the dynamics of the
dispatching process of a ride-hailing platform. The platform adaptively sets prices and
makes matching decisions. One distinguishing feature of our Markovian model is that the
service time is state-dependent, whose rates depend on the current number of idle drivers
and riders in the queue, capturing the spatial system we model. The platform aims to
design dynamic policies that maximize the long-run average revenue rate while accounting
for penalties associated with rider waiting time, both in the queue and during pickup.

• Optimality Analysis. We show that, under certain mild assumptions, the optimal dis-
patching policy has a closed-form solution. Inspired by this closed-form result, for gen-
eral cases, we introduce a class of dispatching policy called zigzag policy, which enjoys a
threshold-type structure and is tractable and easy to implement. We develop a dynamic
programming algorithm that finds a high-quality zigzag policy efficiently.

2 Brief Overview of Model and Analysis

We give a brief overview of our model, analysis, and some key results. Consider a ride-hailing
platform where riders are served over a fixed service region. The arrival of riders follows a

TRISTAN XII Symposium Original abstract submittal



2

Poisson process with rate Λ whose origins are sampled from the service region. Upon arrival,
each customer is offered with a price. If the customer decides to pay for the ride, she joins a
queue waiting to be matched with a driver—the platform is not required to immediately dispatch
a driver upon rider arrival. In the following, we introduce the state space, the action space, and
the policy class for the platform.
State, action and policy. Let L be the total number of drivers in the system and L :=
{0, 1, · · · , L} be the index set of drivers. The state space S := {(l,m) : l ∈ L,m ∈ Z≥0} is
defined as a set of ordered pairs (l,m), where l represents the number of drivers in service and
m represents the number of riders in the queue. There are three events that can cause a state
to change. First, when a driver completes his trip, he immediately becomes idle, and the state
transitions from (l,m) to (l − 1,m). Second, when a customer arrives and accepts the price to
join the queue, the state transitions from (l,m) to (l,m+1). Third, when a dispatching decision
happens, the state transitions from (l,m) to (l + 1,m− 1).

The action of the platform contains two parts: pricing and dispatching. At the moment of
each state transition, the platform updates the price for incoming riders and makes its dispatching
decisions. For pricing, each customer is offered with a price p upon arrival. We assume a linear
relationship between the price p and the trip distance d, given by p = p0 + p1d. Here, p0 is a
fixed base fare preset by the platform for each trip, while p1 represents the per-mile charge which
can be adjusted by the platform according to different states (aka surge multipliers). Riders’
willingness to pay per mile for the ride is drawn from a cumulative distribution function (CDF)
F (·). A customer would accept the price and join the queue if and only if their willingness to
pay per mile is higher or equal to p1. As a result, the effective request rate (or request conversion
rate) can be written as λ = ΛF̄ (p1), where F̄ (p1) = 1 − F (p1) is the tail CDF of customer’s
willingness to pay per mile. We assume λ has a one-to-one relationship to p1. Hence, setting a
price p1 is equivalent to setting an effective rate λ. We use p1(λ) to represent the per-mile price
under effective request rate λ. In the following, we express pricing-related decisions in terms of λ
instead of p. We define λ := {λl,m : l ∈ L,m ∈ N} as a pricing policy where λl,m is the effective
request rate at state (l,m).

A dispatching policy ϕ := {ϕl,m : ϕl,m ∈ {0, 1}, l ∈ L,m ∈ Z≥0} determines whether the
platform dispatches available drivers to riders at state (l,m). In specific, ϕl,m = 1 represents
the dispatching action, and ϕl,m = 0 the holding action (no dispatching) under state (l,m).
The system transitions from state (l,m) to state (l + 1,m − 1) if ϕl,m = 1. At the new state
(l + 1,m − 1), the platform considers again whether to dispatch and repeats this process until
policy ϕ at the current state indicates a holding action.

Combining the pricing and dispatching policies introduced above, we now obtain a policy
(λ,ϕ): the pricing policy λ determines the rate of riders joining the queue, and the dispatching
policy ϕ specifies whether to dispatch an idle driver at each state.
Trip completion rate. For each trip, the service time consists of two parts: “pick-up time” and
“on-trip time”. The pick-up time depends on the number of idle drivers as well as the number
of riders in the queue. The more idle drivers or riders in the queue, the shorter the expected
pick-up time will be as platform often matches the closest idle driver and rider pair. We assume
that trip times/distances are drawn from some distribution. We approximate the service time
of each driver in-service at state (l,m) as an exponential random variable with rate µl,m which
increases with m and decreases with l. The trip completion rate at state (l,m) is thus lµl,m.
Objective. Our objective balances two components: (1) maximizing the platform’s expected
long-run average revenue, and (2) minimizing penalties associated with rider waiting in queues
and pickup delays. Let πλ,ϕ(l,m) be the stationary distribution of having l drivers in service
and m riders in the queue under policy (λ,ϕ). Without loss of generality, we can set the
expected distance of each trip to be 1. Then the long-run average revenue can be written as
R(λ,ϕ) :=

∑
(l,m)∈S πλ,ϕ(l,m) (p0 + p1(λl,m)λl,m) . We consider two penalties: (1) the expected

number of riders waiting to be picked up, and (2) the expected number of riders in the queue. It

TRISTAN XII Symposium Original abstract submittal



3

can be shown that, for penalty (1), replacing the expected number of riders waiting for pickup
with the expected number of customers in service does not affect the optimal policy. Thus, our
objective function can be written as

R̃(λ,ϕ) :=
∑

(l,m)∈S

πλ,ϕ(m, l) (p0 + λl,mp1(λl,m)− c1l − c2m) ,

where c1 is the cost per waiting rider for pickup and c2 is the cost per waiting rider in the queue.

2.1 Optimality

Our first result shows that, under certain mild assumptions, the optimal dispatching policy has
a closed form. We begin by introducing these assumptions.

Assumption 1 We assume µ satisfies the following conditions.

1. µl,m is bounded above, decreasing in l, and increasing in m;
2. µl,m+1 − µl,m is decreasing in m and increasing in l;
3. µl,m − µl+1,m is decreasing in m and increasing in l.

Assumption 1 states that the service rate is decreasing in the number of drivers in service and is
increasing in the number of riders in the queue. Moreover, the increment in service rate with one
more idle vehicle or one more customer in the queue is decreasing in l and m. These are often
satisfied in spatial systems. To help characterize the optimal dispatching policy, we classify a
state into either type 1 or type 2, defined as follows.

Definition 1 We say a state (l,m) a type 1 state if lµl,m > (l + 1)µl+1,m−1 holds (we assume
µ−1,m = µl,−1 = 0). In other words, (l,m) is a type 1 state if the total service rate at (l,m) is
greater than one at (l + 1,m− 1). Otherwise, we say (l,m) is a type 2 state.

In short, a type 1 state has a higher total service rate compared to its lower left state (the state
after dispatching exactly 1 driver) and conversely, a type 2 state has a lower total service rate
compared to its lower left state. The intuition of classifying a state as such is to determine whether
or not the total service rate will increase after a dispatching action. Using these definitions, under
Assumption 1, we can characterize the optimal dispatching policy.

Theorem 1 (Optimal Dispatching Policy) Suppose µ satisfies Assumption 1,

1. If c1 = c2, there exists an optimal policy (λ∗,ϕ∗) such that ϕ∗
l,m = 0 for all type 1 states

and ϕ∗
l,m = 1 for all type 2 states.

2. If c1 > c2, there exists an optimal policy (λ∗,ϕ∗) such that ϕ∗
l,m = 0 for all type 1 states.

3. If c1 < c2, there exists an optimal policy (λ∗,ϕ∗) such that ϕ∗
l,m = 1 for all type 2 states.

Theorem 1 motivates a subclass of general dispatching policies, which we call zigzag policy.
By restricting our attention to this subclass of policies, we greatly simplify the computation
while we can still obtain a near-optimal solution. We begin with its definition.

Definition 2 (Zigzag Policy) We say a dispatching policy is zigzag if:

1. For all l, [ϕl,m : m ∈ Z≥0] is a sequence of consecutive 0(s) followed by consecutive 1(s);
2. For all m, [ϕl,m : l ∈ L] is a sequence of consecutive 1(s) followed by consecutive 0(s).

The definition of zigzag policy is similar to the definition of a matrix in row echelon form
if we consider m as the horizontal axis and l as the vertical axis. One advantage of the zigzag
policy is that the induced Markov chain under is a birth-death process, with a birth rate λl,m

and a death rate µl,m at each recurrent state (l,m). Another advantage is that the policy

TRISTAN XII Symposium Original abstract submittal



4

l
m 0 1 2 3 4

0 0 1 1 1 1
1 0 0 1 1 1
2 0 0 0 0 1
3 0 0 0 0 0

Table 1 – An example of a zigzag dispatching policy.

has a simple structure to implement, as it specifies a dispatching threshold for the number of
riders in the queue at each level of available drivers. The zigzag structure also motivates us to
reframe the problem as a path-finding problem which separates the 0s and 1s. Motivated by this,
we introduce a dynamic-programming-based algorithm that yields a zigzag policy by applying
efficient dominance rules.

2.2 Numerical Experiments

We conduct numerical experiments to evaluate the performance of our algorithm. We set (L,Λ) =
(100, 40). Service rate µl,m is estimated from simulation data. We test various combinations of
penalties (c1, c2), where c1, c2 ∈ {0.5, 0.75, 1}, resulting in a total of 9 different cases. The pricing
function is defined with a base fare p0 = 5, and the dynamic fare component is given by a linear
inverse demand function p1(λ) = 2(1−λ/Λ). Next, we evaluate the performance of our dynamic
programming algorithm under both static pricing (with constant λl,m) and dynamic pricing.
We benchmark our approach against a policy derived from a standard value iteration method,
as well as a naive policy that dispatches drivers immediately if possible. We set a limit of 20
minutes in computation time. We observe that the dynamic programming algorithm significantly
outperforms the benchmarks.

Value Iteration Naïve Zigzag Dynamic Zigzag Static

c1, c2 R̃(λ, ϕ) Time (s) R̃(λ, ϕ) Time (s) R̃(λ, ϕ) Time (s) R̃s(λ, ϕ) Time (s)

0.5, 0.5 112.18 1,200.00 116.03 474.32 128.16 618.43 126.95 169.40
0.5, 0.75 101.53 1,200.00 111.28 955.00 125.80 563.34 124.38 168.92
0.5, 1.0 91.07 1,200.00 111.27 510.14 124.04 490.29 122.45 150.14
0.75, 0.5 87.94 1,200.00 91.03 1,200.00 105.43 643.61 104.69 169.97
0.75, 0.75 77.14 1,200.00 90.92 503.03 103.37 559.14 102.50 168.70
0.75, 1.0 66.55 1,200.00 90.92 257.14 101.82 491.76 100.86 152.63
1.0, 0.5 64.00 1,200.00 71.53 493.03 83.57 583.16 83.22 149.15
1.0, 0.75 52.91 1,200.00 71.53 237.00 81.82 519.07 81.41 150.65
1.0, 1.0 42.31 1,200.00 71.53 146.08 80.50 462.09 80.04 130.64

Table 2 – Comparison of different algorithms under different penalty coefficients.

References
Besbes, Omar, Castro, Francisco, & Lobel, Ilan. 2022. Spatial capacity planning. Operations Research,

70(2), 1271–1291.
Castillo, Juan Camilo, Knoepfle, Dan, & Weyl, E Glen. 2024. Matching and pricing in ride hailing: Wild

goose chases and how to solve them. Management Science.
Wang, Guangju, Zhang, Hailun, & Zhang, Jiheng. 2024. On-demand ride-matching in a spatial model

with abandonment and cancellation. Operations Research, 72(3), 1278–1297.
Xu, Zhengtian, Yin, Yafeng, & Ye, Jieping. 2020. On the supply curve of ride-hailing systems. Trans-

portation Research Part B: Methodological, 132, 29–43.
Yan, Chiwei, Zhu, Helin, Korolko, Nikita, & Woodard, Dawn. 2020. Dynamic pricing and matching in

ride-hailing platforms. Naval Research Logistics (NRL), 67(8), 705–724.

TRISTAN XII Symposium Original abstract submittal


	Introduction
	Brief Overview of Model and Analysis
	Optimality
	Numerical Experiments


