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1 INTRODUCTION

Human suffering and economic losses after a disaster are highly affected by the humanitarian
logistics (HL) planning process. It is generally divided into pre-disaster planning and post-
disaster operation. The former includes facility location and pre-positioning, while the latter
includes inventory-distribution and fleet management. Although disasters are unpredictable,
their devastating impacts can be alleviated by preparing transportation capabilities that can
provide relief goods to affected populations immediately after a disaster. However, pre-disaster
planning cannot be amended in the short term; thus, it requires careful consideration integrated
with post-disaster operation amendable to available limited information.

The integrated pre- and post-disaster HL problems have been extensively studied in the past
decades (e.g., Rawls & Turnquist, 2010), and various optimization techniques, such as two- or
multi-stage stochastic programming, have been proposed (Dönmez et al., 2021). The first and
subsequent stage problems optimize planning and operations, respectively. It should be noted
that relief demand is non-stationary, significantly impacting HL operations. The impact further
spreads to strategic planning to support efficient operations. Therefore, we develop a multi-
stage problem that formulates pre-disaster planning and subsequently determines post-disaster
operations sequentially and recursively according to observed random variable realizations.

Given the damaged communication infrastructure and inadequate historical data, existing HL
multi-stage models lack (1) appropriate information availability and (2) information ambiguity.
Most existing HL models implicitly assume the entire damage is observable after a disaster. In

Figure 1 – Proposed humanitarian logistics planning process
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Table 1 – Incurred costs, decision variables, and observable random variables at each stage
Stage Incurred cost Decision variable Observable random variable

Planning
Facility opening cost
Stockpile holding cost
Procurement contract cost

Facility location
Pre-positioning
Procurement planning

Partially observable
operation

Inventory holding cost
Piecewise-linear deprivation cost*

Inventory control
Relief distribution

Road damages
Probability distribution of demand

Fully observable
operation

Transportation cost
Emergency procurement cost

Fleet management
Emergency procurement

Restoration of communication infra.
Realizations of cumulative demand

* Not included in the partially observable stage.

contrast to physical damage to infrastructures, accurate information on relief demand may require
some time to become clear. Humanitarian organizations, therefore, need to supply relief goods
according to probability distributions of relief demand estimated from demographic data and
macroscopic damages in early chaotic periods (Kawase & Iryo, 2023). In light of the information
availability in practical operations, the HL planning process should be divided into strategic
planning, partially observable, and fully observable operation stages, as shown in Figure 1.

Moreover, the ambiguity of probability distributions is inevitable in the HL planning process.
It has been revealed that, due to ambiguity, the true probability distribution may produce
disappointing performance, and in some cases, relief decisions may be infeasible (Bozorgi-Amiri
& Khorsi, 2016). This phenomenon is known as the Optimizers’ Curse. Distributionally robust
optimization (DRO) is a promising solution to alleviate such adverse impacts. To our knowledge,
no multi-stage HL models address DRO, even though the dynamic nature of relief demand and
restoration of information availability are unique features of HL.

This paper presents a multi-stage DRO model for pre- and post-disaster HL to address in-
formation availability and ambiguity. We formulate a DR multi-stage stochastic linear problem
(DR-MSSLP), using Wasserstein-based uncertainty sets. The dynamical system is based on the
minimum cost flow problem. DRO problems are generally nested min-max problems. Wasser-
stein uncertainty sets can yield a single-level linear reformulation. Furthermore, leveraging the
linearity, a multi-stage Benders decomposition, called Stochastic Dual Dynamic Programming
(SDDP), provides lower bounds for the optimal value of DR-MSSLPs (Duque & Morton, 2020).

2 METHODOLOGY

2.1 Problem setting

The proposed model minimizes the system cost incurred within a given planning horizon in a
DRO manner. The planning horizon is divided into planning and multi-stage operation stages.
The operation stages consist of partially and fully observable stages; when communication in-
frastructure is restored, the stage transitions from the former to the latter. We assume the
restoration process to be uncertain. In the former stage, the probability distribution of relief de-
mand is estimated, while in the latter stage, the past realizations of relief demand are revealed.
Table 1 summarizes costs, decision variables, and observable random variables at each stage.

Figure 2 – An example of humanitarian logistics network
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Relief goods are shipped from distribution centers (DCs) to evacuation centers (ECs) on an
HL network, as shown in Figure 2. The geographic relationships between candidate DCs and
ECs are known. The facility location and capacities are determined from the candidate DCs. We
consider single-packaged relief goods (e.g., water and food). The relief goods flow is explained
as follows. DCs supply pre-positioned and additional procured goods to ECs. The additional
goods are procured from outside of the affected areas. The relief goods are loaded into trucks and
helicopters at DCs, then transported to ECs, and eventually supplied to affected populations.
The goods flow is constrained by facility inventory, transshipment, and vehicle capacity.

Trucks and helicopters deliver relief goods to ECs. Trucks are deployed according to vehicle
procurement planning, and additional helicopters are procured for delivery to ECs with disrupted
road access in the operation stages. Trucks are constrained by road accessibility, facility parking
capacity, and road capacity, in contrast to helicopters. Both vehicles have a carrying capacity.
The movements of trucks, helicopters, and goods are described as macroscopic flows.

2.2 Formulation

We consider the following dynamic programming (DP) equations for the DR-MSSLP:

minx1≥0,y∈{0,1}

[
F1(x1,y) + maxQ2∈Q2(P2) EQ2 [V2(x1,y, ξ2)]

]
, (1)

Vt(xt−1,y, ξt) = minxt∈Xt(xt−1,y,ξt)

[
Ft(xt) + maxQt+1∈Qt+1(Pt+1) EQt+1 [Vt+1(xt,y, ξt+1)]

]
,

where VT+1(·) = 0 ∀t. (2)

F1 and Ft=2,...,T denote linear planning and operation costs, respectively. EQt is the conditional
expectation operator with the probability distribution Qt at stage t. y indicates facility location
and xt indicates other continuous decision variables at stage t. Xt is a set of linear constraints
given random variables ξt and decision variables (xt−1,y), including the dynamical equations
of inventories and shortages, flow conservation constraints, and capacity constraints. Qt(Pt)
is a Wasserstein-based uncertainty set given by nominal distributions Pt = (pit|∀i ∈ [nt]) on
prespecified finite support, {ξ1t , ..., ξnt

t }, with nt realizations of random variables.
The dualization of the Wasserstein metric yields a single-level linear reformulation of Eqs.

(1)(2). Under the finite support, the Wasserstein-based uncertainty set is given by

Qt+1(Pt+1) =
{
Qt+1 = (qjt |∀j ∈ [nt+1])

∣∣∣max
zt≥0,qt+1≥0,

∑
j z

ij
t =pit+1

∑
ij d

ij
t+1z

ij
t ≤ α

}
∀t, (3)∑

i z
ij
t = qjt+1 ∀t, j ∈ [nt+1], (4)

where dijt = ||ξit − ξjt ||δ∈{1,2,∞} and α is the maximum allowable Wasserstein metric. A larger α
produces a larger uncertainty set, which represents a risk-averse preference. The inner problem
is a maximization problem with Eqs. (3)(4) as linear constraints. Therefore, let θt and ωt be
dual variables of Eqs. (3)(4), and we can reformulate Eq. (2) as follows:

Vt(xt−1,y, ξt) = minxt∈Xt(xt−1,y,ξt),θt≥0,ωt
[Ft(xt) + αθt + pt+1ω

⊤
t ] ∀t, (5)

s.t. dijt+1θt + ωi
t ≥ Vt+1(xt,y, ξt+1) and VT+1(·) = 0 ∀t, i ∈ [nt+1], j ∈ [nt+1]. (6)

We make the following assumptions for all stages to solve Eqs. (5)(6):
1. Random variables are stagewise independent, i.e., ξt+1 is independent of [ξ2, ..., ξt], and
2. Xt(xt−1, ξt) is almost surely non-empty for every (xt−1, ξt).

Under the above assumptions, SDDP can yield lower bounds for the optimal value of Eqs.
(5)(6) with guaranteed convergence (Duque & Morton, 2020). It is an iterative algorithm that
generates Benders cuts of the solution to DP equations by utilizing the duality of MSSLPs.
The assumption of stagewise independence relaxes the curse of dimensionality since it generates
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(a) Convergence processes of lower
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(b) Histograms of out-of-sample
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Figure 3 – Numerical results

Benders cuts without tracking all scenarios. Our model assumes the observability of stochastic
demand depends on past restoration processes, which violates Assumption 1. SDDP can avoid
this issue by discretizing the random data process to a Markov chain (Löhndorf & Shapiro, 2019).
Assumption 2 can be satisfied by introducing slack variables into the DR-MSSLP.

3 NUMERICAL EXPERIMENTS

Numerical experiments show the verification of the proposed model and the impact of information
availability and ambiguity, using the HL network shown in Figure 2. The vehicle capacity was
based on trucks and helicopters used in the 2024 Noto Peninsula Earthquake. Cost coefficients
and facility inventory capacities were according to the previous works (e.g., Rawls & Turnquist,
2010). At each stage, the nominal distribution of relief demand was given by a uniform distribu-
tion, and the nominal probability of communication infrastructure restoration was given by 0.7.
100 realizations were sampled at each stage to define finite supports. Relief demand was set to
arise until t=10. This means the total number of scenarios is approximately 10010. We should
note that lower bounds for the optimal value are formed without tracking all scenarios.

Figure 3a illustrates the convergence process of lower bounds in the case of some Wasserstein
uncertainty sets. Figure 3b shows the performance of policies constructed by DR-MSSLPs for
5000 out-of-samples. Figure 3b demonstrates that consideration of information availability and
ambiguity in the HL model contributes significantly to improving its out-of-sample performance.
It should be noted that the only DRO approach might not be sufficient to address the Optimizers’
Curse caused by inappropriate considerations of information availability after a disaster.
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