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1     INTRODUCTION 
 

Unmanned aerial vehicles (UAVs), also called drones, are gaining popularity as an alternative 
delivery mode due to their faster delivery speed and reduced labor costs. Several companies, 
especially e-commerce giants, are conducting pilot projects that use drones to deliver fast food and 
groceries. In 2021, for example, Walmart partnered with Zipline in the United States to provide 
delivery services for areas near Walmart stores in Arkansas. In China, Meituan drone delivery 
services have been launched in Shenzhen and have conducted trial food delivery that cover more 
than 8,000 households.  
 

Drones are expected to play an important role in future urban logistics and transportation. It is thus 
increasingly essential that drone delivery network infrastructures be constructed to enable drones to 
load and unload parcels, take off and land, charge, and park. How to design a drone delivery network 
has attracted increasing attention in recent years, which is studied as the drone-based delivery 
network design problem (DDNDP). Pinto & Lagorio (2022), Enayati et al. (2023), and Liu (2023) 
have investigated and designed strategies for the practical deployment of drone facilities, such as 
charging stations and docking hubs, to address difficulties caused by limited drone capacity and 
flight range. However, research gaps remain and present three main challenges: (i) managing 
complex operations that involve the pickup and delivery of parcels, the critical limitation of battery 
charging for drones, and the time-window requirements for deliveries; (ii) navigating the flight arc 
(e.g., air route) accessibility uncertainty in urban areas due to factors such as weather conditions and 
air traffic control and regulations; and (iii) addressing the urban delivery demand uncertainty with 
limited precedent. Specifically, in urban scenarios, high population density can cause sudden surges 
in demand, which are difficult to predict with precision. Moreover, unlike traditional modes, the data 
of flight arc accessibility for the drone delivery is limited. Integrating demand and arc accessibility 
uncertainties into network design is thus essential for fostering system flexibility and robustness. 
 

This paper studies a drone delivery network problem in an urban low-altitude scenario that involves 
tactical decisions on hub locations, capacities, and the establishment of flight arcs. Our objective is 
to minimize the investment cost of network infrastructures and the operational costs of drone 
delivery while accounting for both soft and hard time windows for parcels and the capacity of drone 
parking and charging facilities. To address the uncertainty in demand and air route conditions, we 
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propose a two-stage distributionally robust optimization approach, which employs a distribution 
separation procedure and split cuts in a combined Benders decomposition and column-and-
constraint generation algorithm. The effectiveness and robustness of the proposed method are 
demonstrated through extensive experiments. 

 

2     PROBLEM STATEMENT 
 

We consider a drone delivery system that operates a fleet of drones to cater to uncertain flight arc 
accessibility and demands. We define the set of demands as 𝐾 , indexed by 𝑘 . Each demand 
comprises a pick-up node 𝑠!, a drop-off node 𝑓!, a time window [𝑊! , 𝑈!], and a delivery amount 
𝐷!". Notably, the amount 𝐷!"	is subject to uncertainty, with 𝜔 ranging over a finite sample space Ω. 
We establish a directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 and 𝐴 are the node set and arc (i.e., route) set, 
respectively. Node set 𝑁 includes the set of candidate hubs 𝐻 and the set of customer nodes 𝐽, which 
include pick-up and drop-off nodes. The condition of arc (𝑖, 𝑗) under each uncertain scenario 𝛾 is 
defined as 𝐶#$

% , which denotes the accessibility of the arc. For each hub, we define a fixed cost 𝐹&, a 
unit capacity cost 𝐹' . We also define a fixed cost 𝐹#$ for each arc. 
 

We presume that the drone delivery system operates under the following assumptions: 
1. A drone can serve at most one customer per trip. 
2. The drone’s battery is replaced with a fully charged one when it returns to the hub. 
3. The capacity of a drone is limited to one unit. 
4. The hub from which a drone departs and the one it returns to can be different. 
5. The demand can be split and served by multiple drones or by one drone for multiple trips.  

Assumptions 1-3 stem from the recognized constraints on drone flight endurance, which are 
commonly used in both practical applications and literature (Murray & Chu, 2015); assumptions 
4-5 allow for the sharing of drones between hubs and the collaborative fulfillment of demand by 
multiple drones, which would enhance operational flexibility in reality. 
 

We aim to design a drone delivery network that minimizes overall investment and operational costs. 
Our problem can be divided into two stages. The first-stage model determines the drone network, 
which involves three types of decision variables: (i) 𝑧# on whether hub 𝑖 is active or not; (ii) 𝑦#$ on 
whether arc (𝑖, 𝑗) is active or not; and (iii) 𝑞# on the capacity of hub 𝑖. The second-stage model is for 
routing drones to fulfill uncertain demands under operational constraints while considering the arc 
accessibility and capacity uncertainty. The decision variables include the number of drones that pass 
through each arc at each time period. 
 

2.1  Mathematical Model 
 

The first-stage model determines the drone network. The objective function 
 

min
𝒚,𝒛,𝒒

A𝑧#𝐹&
#∈&

+ A 𝑦#$𝐹#$
(#,$)∈/

+A𝑞#𝐹'
#∈&

+ 𝔼𝕡1[𝒬(𝒚, 𝒛, 𝒒, 𝜔, 𝛾)] 

 
minimizes the total cost, which includes the investment cost of the hubs and air routes (arcs) and the 
expected operational cost from the second stage, where	𝕡I is the distribution of the uncertainties. 
 

The second-stage model is for routing drones, with the objective 𝒬(𝒚, 𝒛, 𝒒, 𝜔, 𝛾)  minimizing 
expected general operational costs while accounting for operational constraints, demand fulfillment 
constraints, and hub and arc capacity. 
 

3     Methodology 
 

3.1  Stochastic programming problem 
 

In practice, we generally do not know the true distribution 𝕡I that characterizes demand and arc 
accessibility and capacity. Some historical data on ground delivery can provide reference into the 
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uncertain air delivery demands. As for the arc conditions, we can only make assumptions by 
considering historical environmental data and possible regulations. By substituting the term 𝔼𝕡1[	∙	] 
in the first-stage model with 𝔼𝕡∗[	∙	], we first build a stochastic programming model, where 𝕡∗ 
denotes the stochastic distribution constructed using historical data and assumptions. For 
convenience, we define all variables in the first-stage model as 𝒙 and those in the second-stage 
model as 𝒂 . The stochastic programming model can be thereby written as: min

𝒙
𝑓(𝒙) +

𝔼𝕡∗[𝒬(𝒙, 𝜔, 𝛾)]. The model can then be solved by using the sample average approximation (SAA) 
method. 
 

3.2  Distributionally robust optimization 
 

In reality, the data for air delivery are scarce. On the demand side, we only have some ground 
delivery data for reference. On the supply side, the flight arc accessibility and capacity, which is 
affected by air traffic control and weather conditions, is rare, if not completely unknown. Therefore, 
the distribution generated by historical data and assumptions may be far from the true distribution 
(Wang et al., 2020). To deal with this issue, distributionally robust optimization (DRO) mitigates 
overfitting to historical datasets and assumptions by incorporating an ambiguity set that 
encompasses all possible distributions. 
 

By setting the function 𝔼𝕡1[	∙	] as max
ℙ∈𝔅×ℱ

𝔼ℙ[∙], the DRO model is thereby written as min
𝒙
O𝒇⊺𝒙 +

max
ℙ∈𝔅×ℱ

𝔼ℙ[𝒬",%(𝒙)] |𝐴𝒙 ≥ 𝑏, 𝒙 ∈ ℤV, where 𝔅 and ℱ are the Wasserstein distance-based ambiguity 
set for demand and arc accessibility uncertainty, respectively. Due to the space limitation, we express 
the subproblem in a standard form here: 𝒬",%(𝒙) = min

𝒂
Y𝒈",%⊺ 𝒂",%|𝑊",%𝒂",% ≥ 𝒓",% −

𝑇",%𝒙, 𝒂",% ∈ ℤ^. 
 

To solve this problem, we first relax the two-stage model into a linear programming problem, then 
add it to the first-stage model in the form of a Benders cut. The form of the cut is expressed as 𝜃 ≥
∑ ∑ 𝑣"𝑜%	%∈;	"∈< Y𝜋",%∗ (𝒙)⊺(𝒓",% − 𝑇",%𝒙)^, where 𝜃 represents the worst-case objective value of 
the second stage. Here 𝜋",%∗ (𝒙) is the optimal dual multipliers for the constraints of the second-stage 
model and 𝑣" and 𝑜%	are the worst-case probabilities obtained by the distribution separation model 
min
𝒗
Y∑ ∑ 𝑣"𝑜%	%∈;	"∈< 𝒬(𝒙,𝜔)|	𝒗 ∈ 𝔅^ . We design an algorithm framework to iteratively add 

Benders cuts. To further improve the algorithm’s performance, we also introduce Column-and-
Constraint Generation (CCG) technology, which would tighten the model by adding several 
variables and constraints of the second-stage problem into the first-stage model. 
 

4     NUMERICAL RESULTS 
 

We conducted extensive numerical experiments using a dataset comprising 8 days of daily 
operational data for food delivery from Meituan in Beijing, with candidate hubs generated by K-
means clustering. The flight arc accessibility data was generated from a uniform distribution.  
 

  
(a)  Convergence curves      (b) Performance under various 𝜀            (c) Cost-benefit test 

Figure 1 – Test performance of DRO 
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We first test the performance of DRO and our proposed method. Figure 1(a) shows that the DRO 
method converges in only 5 iterations using both Benders and CCG methods, achieving an optimal 
objective value of 8.915. In contrast, when only Benders cuts are used, the gap remains at 94.4% 
after 7200 seconds, with an objective value of 28.480. This highlights that CCG significantly 
accelerates convergence by providing a better estimation of the second-stage objective function. 
Figure 1(b) examines the robustness of the DRO solution by varying the ambiguity set deviation 𝜀. 
The results indicate that the best mean value is achieved at 𝜀 = 0.5. Furthermore, the cost-benefit 
analysis shown in Figure 1(c) reveals that as uncertainty increases, the benefits of DRO rise 
significantly, while the cost to maintain robustness increases slightly.  
 

Figures 2 compare the delivery network generated by DRO and by placing hubs at pickup nodes. 
The radar chart in Figure 2(c) shows that placing hubs at pickup nodes leads to high investment costs 
without reducing operational costs. Although travel costs slightly decrease, the demand rejection 
and drone usage costs increase due to inefficient drone sharing and scheduling. 

 

   
(a)  Network of DRO              (b) Basic network with                         (c) Radar chart 

hubs at pickup nodes 
Figure 2 – Case study of different delivery networks 

 

5     CONCLUSION 
 

This paper study the design of a drone delivery network with uncertain demand and flight arc 
accessibility. The proposed two-stage distributionally robust optimization approach has proven to 
be effective in minimizing investment and operational costs while accommodating the complexities 
of customer time windows and drone capacity constraints. The extensive experiments conducted 
have validated the robustness and effectiveness of our method. In the full version of the paper, we 
will provide a comprehensive introduction to the complete model, detailed descriptions of the 
algorithm and acceleration techniques, a complete set of experiments, and an in-depth analysis of 
the solutions generated by our models. Additionally, we will offer several management insights 
aimed at optimizing decision-making in real-world applications.  
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