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1 Introduction

Public transportation is essential for urban mobility, offering a sustainable alternative to private
vehicles. However, transit networks often suffer from overcrowding and queuing, leading to
discomfort and delays. Accurate simulation of passenger flows under dynamic congestion is
crucial for optimizing transit performance and improving passengers’ experience.

Dynamic Transit Assignment (DTA) models simulate passenger route choices and their inter-
actions with the public transport network, taking into account the within-day evolution of travel
demand and the effects of congestion. Macroscopic models, which aggregate travellers into flows,
allow capturing broader system interactions, enhancing computational efficiency for large-scale
networks (Bellei et al., 2005). Schedule-based DTA models translate the temporal dimension into
the structure of diachronic graphs (Nuzzolo & Russo, 1998), which represent the network over
time. This approach assumes perfect knowledge of run timetables by passengers and thus differs
from hyperpath-based optimal strategies (Nguyen & Pallottino, 1988, Spiess & Florian, 1989)
where only the distribution of line frequency is considered for route choice. To capture dynamic
passenger decision-making and their expectations under uncertainty, schedule-based models need
to integrate fail-to-board probabilities (Hamdouch & Lawphongpanich, 2008), which account for
passengers who cannot board arriving vehicles due to capacity constraints, by introducing a
different kind of hyperpaths (Gentile & Noekel, 2016).

A meaningful comparison of design scenarios requires high algorithm precision that can be
achieved by improving the speed of convergence to an equilibrium between demand and supply.
Computational challenges arise due to the large size of diachronic graphs and the slow convergence
of traditional fixed-point algorithms like the Method of Successive Averages (MSA), limiting
real-time applicability for providing short-term forecasts of passenger volumes on vehicles and
at stops. In this paper, we first formulate deterministic equilibrium on schedule-based transit
networks with fail-to-board probabilities as a fixed-point problem by considering a one-to-one
map through Gradient Projection (GP), instead of the classical one-to-many map of network
loading. Then, we apply to this fixed-point problem a new solution method called Adaptive
Trust Contraction (TC-A) algorithm (Gentile et al., 2024). The result is linear convergence for
the analysed DTA models with capacity constraints and strategic route choice.
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2 Methodology

To model passenger flows under congestion, we formulate DTA as a fixed-point problem with
iterate p (i.e., the vector of arc conditional probabilities or splitting rates by destination), where
the mapping function models demand loading, network congestion and route choice. Arc condi-
tional probabilities p = [r,x] reflect passenger route choices r at standard nodes and the outcome
x of boarding at stops (fail-to-board probabilities), which may fail due to insufficient capacity.

Following the implicit path enumeration approach proposed in Gentile (2016), we define arc
flows q as the result of loading the origin-destination demand d on the network based on given
arc conditional probabilities p:

q = q(p;d). (1)

Arc flows q allow computing arc costs c and fail-to-board probabilities x that take into ac-
count passenger congestion (respectively, overcrowding and queuing) based on the supply charac-
teristics s (essentially, the capacity constraints, since line speeds are embedded into the structure
of the diachronic graph):

c = c(q; s), (2)

x = x(q; s). (3)

Local (deterministic) route choices r are the result of shortest hyper-tree computations by
destination, which yield the arc weights w (i.e., the cost to reach a destination using a given arc,
conditional on being at its tail):

w = w(c,x), (4)

r ∈ r(w). (5)

When two or more local alternatives have the same minimum cost there are infinite distribu-
tion of users that satisfy Wardrop principles (Wardrop, 1952), therefore the deterministic map
r(w) yields a set of points. Finally, arc conditional probabilities are updated using a convergence
method. This process continues with the next iteration until convergence criteria are met.

Traditionally, the problem is formulated considering as fixed-point mapping the one-to-many
operator provided by the deterministic network loading map just described, which is given by
the composition of equations 1, 2, 3, and 4:

p ∈ [r(ŵ(p)), x(q(p))], (6)

where
ŵ(p) = w(c(q(p)), x(q(p))). (7)

The issue is that the typical all-or-nothing assignment to shortest hyper-paths r∗(w) that is
adopted to implement the deterministic network loading map leads to solutions away from equi-
librium. MSA solves this kind of fixed-point problems by averaging all solutions obtained by
applying the map, but it suffers from slow convergence due to decreasing step sizes:

p(i+1) = p(i) +
1

1 + γ · i
·
(
f∗(p(i))− p(i)

)
, (8)

f∗(p) = [r∗(ŵ(p)), x(q(p))] (9)

where p(i) is the solution at iteration i. To mitigate this, a reduction factor γ < 1 can be
adopted to speed up convergence, lowering the weight of older iterates. Anyhow, the fail-to-
board mechanism introduces additional non-linearities, increasing the model complexity and
causing oscillations in cost updates, which further slow convergence.

To overcome these limitations, we adopt the GP as a fixed-point mapping. We have equi-
librium when the route choices r subtracted by the arc weights w (scaled by a factor σ) and
projected onto the feasible region defined by flow conservation yields again the same point:

p = f(p) ≡ [ProjR (r(ŵ(p))− σ · ŵ(p))) , x(q(p))], (10)
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Arc weights are the gradient of the Beckmann integral corresponding to our local deterministic
model, i.e. the objective function of an optimization program whose solution is an equilibrium.
Due to non-separable congestion effects in transit networks, the Beckmann integral is not directly
applicable, and we can formulate the equilibrium conditions as a Variational Inequality problem.
In this paper, we prefer to introduce directly the above equivalent fixed point problem. Pure
GP algorithms may still face challenges with convergence, which is why the step size is further
scaled by an MSA-like factor, proportional to the number of iterations (Gentile, 2016).

We enhance the GP approach with the Adaptive Trust Contraction (TC-A) algorithm. The
TC-A is an application of the feasible direction method (iterating a step along a descent direction)
for nonlinear optimization on convex sets, with the objective function being the sum of squared
residuals. It operates under the assumption that the residuals f(p) − p indicate a descent
direction relative to the sum of squared residuals. TC-A identifies the step α from p to f(p)
by escalating it by a factor 1 + γ1 > 1 if the last iterate enhanced the sum of squared residuals
compared to the prior iteration; conversely, if no improvement is observed, the step is adjusted
downwards by a factor 1 + γ2 > 1. In this scenario, both the current iterate and the search
direction are consistently updated based on the assumption that the method will converge for a
fixed, yet unknown, step size. The adjustment formula for α(i) is articulated as following:

α(i) =


min

(
1, α(i−1) · (1 + γ1)

)
, if y(i) < y(i−1)

α(i−1)

1 + γ2
, if y(i) ≥ y(i−1)

(11)

where y(i) is the sum of squared residuals at iteration i. Suggested values for the adjustment
factors are γ1 = 0.1 and γ2 = 0.5.

3 Results and Discussion

We evaluated the performance of GP and TC-A versus pure MSA using a relative gap criterion.
Testing was first conducted on a simple network, with 60 passengers arriving at a rate of 1
per minute over one hour. This network consisted of a single transit line connecting two stops,
with four transit runs departing every 20 minutes, starting at minute 11. In an unconstrained
scenario with a 20-passenger capacity per run, passengers distributed as expected across the four
runs: 11 passengers boarded the first run, 20 the second and third runs, and 9 the last. With
no boarding delays, both MSA and TC-A reached convergence in one iteration. To simulate
congestion, we introduced capacity constraints of 18, 15, and 10 passengers per run, representing
slight, moderate, and severe congestion. Figure 1 shows the convergence trends across these
scenarios, underscoring TC-A’s faster adaptability in real-time scenario optimization.

At an 18-passenger capacity, some fail-to-board events occurred, with passengers from the
second and third runs needing to queue for later departures. TC-A handled this level efficiently,
reaching convergence in 3 iterations, while MSA required 15 iterations to achieve a relative gap of
10−3. With a reduced capacity of 15 passengers, queuing effects compounded, leading to delays
across the second, third, and fourth runs. Here, TC-A reached convergence in 9 iterations,
maintaining efficiency even as cumulative delays prevented 4 passengers from completing their
trips; MSA required 80 iterations to reach a gap of 10−3. Under a severe 10-passenger capacity,
fail-to-board events intensified across all runs, leaving 20 passengers unserved due to demand
exceeding capacity. TC-A reached convergence within 10 iterations under these conditions, while
MSA took over 100 iterations to reach a relative gap of 10−3.

We further tested TC-A on a medium-sized network simulating peak conditions in Singapore,
with 38,000 passengers, 105 zones, and 72 transit lines. The assignment graph contained 688,362
arcs, representing 800 vehicle runs with 100-passenger capacity. On an Intel Core i7-7700 pro-
cessor, TC-A reduced computation time by 14% compared to MSA, reaching a relative gap of
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Figure 1 – Convergence and step size trends of MSA and TC-A across different congestion levels.
The trends of step size for congested MSA (capacity 18, 15, and 10) overlap.

10−3 in 74 seconds (9 iterations), while MSA took 83 seconds (17 iterations). TC-A also achieved
higher precision, reaching a relative gap of 10−4 in 522 seconds (47 iterations), while MSA did
not meet this threshold within 100 iterations.

The results demonstrate that TC-A outperforms MSA in both convergence speed and preci-
sion, particularly under capacity constraints and in larger, congested networks. TC-A’s adaptive
step sizing effectively manages non-linearities from fail-to-board probabilities, reducing oscilla-
tions and computation time, making it ideal for real-time high-demand transit optimization.
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