
Learning to Prune: Fast Feasible Trip Generation for
High-capacity Ridepooling

Youngseo Kim, Sirui Li, Hins Hu, Wenbin Ouyang, Samitha Samaranayake, Cathy Wu
Extended abstract submitted for presentation at the 12th Triennial Symposium on

Transportation Analysis conference (TRISTAN XII)
June 22-27, 2025, Okinawa, Japan

February 11, 2025

Keywords: Learning-guided Discrete Optimization, High-capacity Ridepooling, Request-Trip-
Vehicle Graph, Graph Neural Network

1 INTRODUCTION
The Request-Trip-Vehicle (RTV) framework is a state-of-the-art approach for solving real-time
high-capacity mobility-on-demand vehicle dispatching (Alonso-Mora et al., 2017). It efficiently
decomposes the NP-hard problem into tractable matching and routing problems by constructing
an RTV graph. The key technique for achieving tractability involves generating a set of shareable
combinations of requests (referred to as a trip) rather than considering all combinations of
requests (see fig. 1(a)). Recently, Kim et al. (2023) proposed an extension of the RTV framework
for offline problems (i.e., problems with known demand, such as day-ahead scheduling in pre-
booking systems), enabling a wider range of applications.

With increasing attention to pooling services such as microtransit (serving 4-8 passengers with
shuttles and up to 30 passengers with buses) and paratransit (serving 4-12 passengers), developing
efficient schedule engines for high-capacity vehicles has become more essential. However, as
vehicle capacity increases, the number of trips within the framework grows exponentially, creating
a bottleneck in the state-of-the-art RTV framework (Shah et al., 2020). To address this challenge,
we propose a supervised learning approach designed to reduce solution time by predicting and
pruning infeasible trips. In this paper, we present numerical results using the Li instances (Li &
Lim, 2008), a popular benchmark, which demonstrates that the proposed learning-guided RTV
framework significantly reduces computation time while maintaining comparable solution quality
(see fig. 1(b)). On average, 62.5% of the computation time in the RTV framework is spent on the
trip generation problem filtering infeasible shared trips. Our learning-based method deploys a
GNN structure to predict the feasibility of routes between trips and vehicles, achieving a median
reduction in solution time of 41.9%1, with a modest compromise of 2.6% in the service rate.

All combinations
Shareable trips
(Alonso-Mora et al., 2017)

Feasible trips
(Ours)

RTV
graph

- RV graph
- RTV graph

with heuristics

Pruned
-RTV
graph

Computational efficiency

So
lu

tio
n

qu
al

ity

(a) (b)

Figure 1 – RTV vs Pruned-RTV: (a) Our method generates feasible trips as a subset of shareable
trips, and (b) Pruned-RTV improves computational efficiency while maintaining solution quality.

1The median for all instances is reported to mitigate the effect of outliers, as the mean can be skewed by a
3-hour timeout. For detailed results by category, please refer to Table 2 in the Results & Discussion section.

TRISTAN XII Symposium Original abstract submittal

2

2 METHODOLOGY
2.1 Pruned-RTV framework
We consider a set of requests R, each with specified pickup and drop-off locations and time
windows, and a set of vehicles V, each starting from a designated depot. At each decision
epoch (b = 1, . . . , B), we collect the active set of requests, whose pickup time windows begin
within that decision epoch, and the active vehicles with available seats. Using these active sets
of requests and vehicles, we generate trips Kb (i.e., sets of shareable requests) as proposed in
the RTV framework (Alonso-Mora et al., 2017). We refer to our framework as the Pruned-
RTV framework to highlight our approach of predicting and pruning infeasible trips. Figure 2
illustrates a schematic overview of the Pruned-RTV graph generation.

A

B

C

1

2

B C

A C

A B

C

A C

B

1. Construct trips (𝒂=2) 3. Generate Pruned-RTV

1

2
B C

A C

A B

[Phase 1]

1

2
B C

A C

A B

[Phase 2]

1

2
B C

A C

A B

[Prune TV-graph]
2. Get 𝒚𝒆 from GNN

0- Pruned

1

2
B C

A C

A B

Infeasible

1

1
1

4. Solve ILP, Increase 𝒂 by 1
and Repeat 1-3

A

B

C

1

2

B C

A C

A B

C

A C

B

A B C

Pruned

[Solve routing problems]

Figure 2 – Schematic overview of generating Pruned-RTV graph
The Pruned-RTV graph is constructed progressively, beginning with the smallest trips and

incrementally expanding to larger trip sizes (i.e., trip size a = 1, . . . , |Kb|). This systematic
process involves four main steps. First, we begin by enumerating trip sets of size a. At each batch
b, all possible trips Kb are enumerated, excluding trips containing subsets that were previously
identified to be infeasible. This iterative approach, with increasing trip size, reduces unnecessary
exploration. Second, we create an edge between each trip and vehicle, where e(k, v) represents
each trip k and vehicle v pair, with feasibility predicted using a Graph Neural Network (GNN).
A binary variable ye indicates feasibility, with ye = 1 for feasible trips and ye = 0 for infeasible
ones. Third, we prune all infeasible edges and then solve routing problems between trips and
vehicles to determine the optimal path for a vehicle to serve all requests within a trip. This
routing problem is NP-hard and often becomes a bottleneck as trip size increases, which is
more likely with a large vehicle capacity c. However, the earlier pruning plays a crucial role in
reducing this complexity by eliminating less promising trips, significantly reducing the number of
routing problems to solve.2 Fourth, the Integer Linear Programming (ILP) for RTV is solved to
determine the optimal assignments, as proposed in Alonso-Mora et al. (2017). Due to the prior
pruning, this step involves solving a reduced-size ILP, specifically for the Pruned-RTV graph.
Afterward, we increment the trip size by 1 and repeat steps 1-4, continuing until reaching the
maximum trip size |K| (i.e., the vehicle capacity assuming one passenger per request).

2.2 Training
2.2.1 Data
We used the Li instances (Li & Lim, 2008), a standard benchmark for the offline Pickup and
Drop-off Problem with Time Window (PDPTW). Although our framework is applicable to both
online (i.e., unknown, real-time demand) and offline (i.e., known demand) problems, we focus
on the offline dataset to simplify evaluation. Our training process focuses on the ‘lc’, ‘lr’, ‘lrc’,
‘LC’, and ‘LRC’ classes, with each class name indicating a spatial distribution: ‘r/R’ refers to
random, and ‘c/C’ to clustered). The dataset is split into training and validation sets in an

2Note that if false positives occur (i.e., if an infeasible trip is incorrectly predicted as feasible), these edges are
pruned after solving the corresponding routing problem. Although this introduces a slight increase in computation
time, it does not impact the overall solution quality.

TRISTAN XII Symposium Original abstract submittal

3

8:2 ratio. We collected labeled training datasets by solving the original RTV within the rolling
horizon framework (see Kim et al. (2023) for details) and labeling the feasibility of trip-vehicle
edges. We then evaluate the out-of-distribution performance on the new ‘LR’ class.

2.2.2 GNN architecture

Figure 3 illustrates the architecture of a bipartite GNN used to update embeddings across mul-
tiple graph components: trip nodes (k), vehicle nodes (v), and edges (e). The model performs
three sequential steps for message passing through the graph, drawing significant inspiration
from the work of Morabit et al. (2021). In the first pass, the bipartite GNN structure identifies
the neighboring trip nodes for each target vehicle node. For each trip-vehicle pair, the edge em-
beddings are aggregated and concatenated with the target vehicle node embedding. This joint
representation is passed through the vehicle Neural Network (NN) to generate updated vehicle
embeddings. The second and third passes update the trip and edge embeddings, respectively,
following a similar procedure.

target node

target node

concatenate

concatenate

Select
neighbors activate

function

concatenate

First Pass
Trip
→

Vehicle

update
embedding

update
embedding

update
embedding

Select
neighbors

Select
neighbors

Vehicle NN

Trip NN

Edge NNtarget edge

Second Pass
Vehicle
→

Trip

Third Pass
Trip, Vehicle

→
Edge

aggregate

aggregate

𝑒!!

𝑒"!

𝑒#!

𝑒!!

𝑒!!

𝑒!" 𝑒!!

𝑒!"

𝑒!!

Figure 3 – GNN architecture
Each trip state is represented by a concatenated vector containing all request details, including

the pickup and drop-off coordinates (latitude and longitude) as well as the time windows (start
and end). With a vehicle capacity set to 10 passengers, this results in 80-dimensional vector
(10 passengers × 8 components per request). For vehicles, feature vectors capture the position
(latitude and longitude) and the corresponding time for both the current stop and the planned
sequence of stops, yielding a 60-dimensional vector (3 components × 20 visited nodes). Lastly,
the edge embeddings are formed by concatenating the vehicle and trip embeddings.

Table 1 – Network parameters
Maximum epoch 1000 Vehicle and trip NN 1 layer
Learning rate 0.0001 Edge NN 2 layers
Embedding size 32 Activation function ReLu
Batch size 10 Weighted cross-entropy loss 10:1

TRISTAN XII Symposium Original abstract submittal

4

All network parameters are listed in table 1. All experiment codes and data will be available
online (a link will be included in the full paper). The experiments for the RTV and Pruned-RTV
frameworks were conducted using Intel Xeon Platinum 8260 processors, while Intel Xeon Gold
6248 processors were used for training the GNN. Total training time is approximately 14 hours.

3 RESULTS & DISCUSSION
Table 2 compares the performance between RTV and Pruned-RTV in terms of computation
time and service rate. We achieve a reduction in computation time for 31 out of 38 out-of-
distribution instances of the ‘LR’ class, with 15 instances experiencing no performance decrease.
More specifically, for the first category, which includes 15 instances, we observed both reduced
computation times and improved service rates. The average computation time decreased from
8790 seconds to 1526 seconds, achieving a 5.8 times speedup. The service rate increased from
14.6% to 17.7%, a 1.2 times improvement, due to our learning-based pruning technique being
more aggressive than the built-in pruning technique of RTV. For the second category, covering
16 instances, we achieved a 4.3 times speedup, with a trade-off of approximately a 20% reduction
in the service rate. In future experiments, we can further minimize the reduction in service rate
by lowering false negative rates (i.e., predicting feasible trips as infeasible, which deteriorates
solution quality).

These results suggest promising avenues for leveraging learning techniques to improve domain-
specific heuristics, such as the RTV graph, for PDPTW. For the seven instances where compu-
tation time increased, we plan to address this issue by reducing the false positive rate (i.e.,
predicting infeasible trips as feasible, which adds unnecessary computational load). Future re-
search will focus on further performance improvements through training data augmentation,
exploration of alternative GNN architectures, and extensive hyperparameter tuning.

Table 2 – Comparison of performance between RTV and Pruned-RTV framework

RTV Pruned-RTV Comparison
(increase by a factor of x)

Instance
count

Compute
time (sec)

Service
rate (%)

Compute
time (sec)

Service
rate (%)

Computational
speedup

Service
rate increase

Computation time ↓
Service rate ↑ 15 8790 14.6 1526 17.7 5.8x 1.2x

Computation time ↓
Service rate ↓ 16 3663 19.6 848 15.3 4.3x 0.8x

Computation time ↑
Service rate – 4 447 12.0 5120 12.0 0.1x 1.0x

Computation time ↑
Service rate ↓ 3 822 20.6 timeout∗ - - -

* We have a 3-hour timeout to ease the repetition of experiments. This can be removed in future experiments.

References
Alonso-Mora, Javier, Samaranayake, Samitha, Wallar, Alex, Frazzoli, Emilio, & Rus, Daniela. 2017. On-

demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National
Academy of Sciences, 114(3), 462–467.

Kim, Youngseo, Edirimanna, Danushka, Wilbur, Michael, Pugliese, Philip, Laszka, Aron, Dubey, Ab-
hishek, & Samaranayake, Samitha. 2023. Rolling Horizon Based Temporal Decomposition for the
Offline Pickup and Delivery Problem with Time Windows. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(4), 5151–5159.

Li, & Lim. 2008. Pickup and Delivery Problem with Time Windows (PDPTW) Benchmark. https:
//www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/. Accessed: 2024-10-17.

Morabit, Mouad, Desaulniers, Guy, & Lodi, Andrea. 2021. Machine-learning–based column selection for
column generation. Transportation Science, 55(4), 815–831.

Shah, Sanket, Lowalekar, Meghna, & Varakantham, Pradeep. 2020. Neural approximate dynamic pro-
gramming for on-demand ride-pooling. Pages 507–515 of: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34.

TRISTAN XII Symposium Original abstract submittal

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

	INTRODUCTION
	METHODOLOGY
	Pruned-RTV framework
	Training
	Data
	a:gnn architecture

	RESULTS & DISCUSSION

