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1 INTRODUCTION

Carsharing pricing decisions have attracted significant attention in the research literature. They
have been identified as a promising instrument to resolve fleet imbalances Illgen & Hock (2019),
and improve profits and service rates. Among other things, prices are commonly optimized under
deterministic demand assumptions Jorge et al. (2015). Few studies have taken the demand
stochasticity into consideration when optimizing pricing decisions; examples include Lu et al.
(2018), Huang et al. (2021) and Pantuso (2022). Still, these studies address carsharing demand
as an exogenous random variable described by a given probability distribution (e.g., Poisson
distribution). The existing work does not account for the influence of carsharing services on
customers’ adoption probabilities, which however makes the random demand dependent on prices.

In this study, the research goal is to address the carsharing pricing and relocation problem
with endogenous demand uncertainty. Particularly, pricing decisions cause shifts in the probabil-
ity distribution of random demand. This type of endogenous uncertainty corresponds to Type-I
according to the classification in Goel & Grossmann (2004). For a one-way carsharing system
captured by graph G := (Z,.A) with Z representing the carsharing stations and A containing
directed arcs between any pair of stations, we have random demand ¢ : Q — ZM! on each arc
(i,j) € A. The dependency of random demand £ on pricing decision denoted as z makes the
distribution function conditional on x, which is denoted as P,. Given price-dependent random
demand, the decision maker (i.e., carsharing system operator) seeks to optimally set carsharing
service prices at different locations, and operate necessary relocation for maximizing profits for
a target time period.

The contribution of this research is fourfold.

e We propose a carsharing pricing and relocation problem with decision-dependent demand
uncertainty.

o We develop a a two-stage mized-integer non-linear stochastic program to address the pricing
and relocation problem, where the random demand & follows the price-dependent proba-
bility distribution P,.

e A tailored L-shaped method which accounts for decision-dependent distributions is devel-
oped for retrieving exact solutions of the stochastic program. The algorithm extends the
scalability of solving this type of problem, comparing to off-the-shelf solvers (e.g., Gurobi).
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e Extensive numerical studies have been executed on instances of real-world scale by ac-
counting for empirical price-dependent carsharing demand distributions.

2 Method

2.1 Mathematical Modeling

Let Z be the set of zones where differentiated pick-up fees can be applied to. The pick-up fee is
assumed to be chosen from a set of discrete pricing levels denoted as £. Binary variable x,; takes
value 1 if pricing level [ is offered at zone z, 0 otherwise. Given a solution x = (2).ezcc,
uncertain demand realizes according to probability distribution P,. Relocation decisions are
assumed to be made simultaneously with the pricing decisions. Let V be the set of shared
vehicles. Binary variable s,; takes value 1 if vehicle v is made available at station ¢, 0 otherwise.
Each relocation operation s,; requires a fixed cost Cy;. The general two-stage stochastic program
is developed as follows.

max { — Y Y Cuisei + Ep, [Q(z,5,8)]|(z,5) € & € {0, 1}EXIE 5 fo, 13V (1)

veV i€l

The objective is to maximize expected revenue after subtracting the required costs for relocation.
In problem (1), X represents the set of feasible pricing and relocation decisions. Each recourse
problem Q(z, s, &) under realization £ represents the revenue generated by optimally allocating
rental cars to materialized demand. In our specification of the recourse problem, it can be
formulated as a MILP problem.

Given a first-stage decision z, we define conditional distributions P, based on a probability
space (€2, F, uz). Rental demand is defined as a random variable £ with values in ZM | that is,
each &;; represents the total rental demand on corresponding arc (i,j5) € A. The probability
space (2, F, i), as well as the way of assigning probabilities to realizations of £ according to p,
are introduced in the following.

Figure 1 illustrates the probability space (2, F, i, ), where we let random event w be a vector
of 0/1 elements having length equal to the number of customers in the system and representing
the withdrawal/occurrence of customers. The set F of events becomes the power set of €.
The probability measure pu, depends on x as indicated by the subscript. Given this setup, we
define the random variable § as {(w) := (§;j(w))(,j)ea- Let i(k) and j(k) denote the origin and
destination stations of customer k, each &;j(w) is simply given as

Gilw = DY wk V(i eA

kli(k)=1,j(k)=j

Using a one-dimension case with 6 customers shown in Figure 1 as an example, the random
outcome w represents the case that only the second and fourth customers choose carsharing,
while the others leave the system. This corresponds to the random demand realization {(w) = 2.

(9%

w =[0,1,0,1,0,0]
§(w) =2

Figure 1 — lllustration on probability space (S, F, uy) of possible carsharing choice outcomes.
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The distribution function of & on ZM! is obtained as follows. For each potential customer k
we define the probability of using carsharing given the price set by decisions z as P(wy = 1|z).
This probability can be modeled, e.g., using discrete choice models. Therefore, the probability
measure p, can be defined as

no@) = ] Plwr=12) J] (1—Pwr=1l) (2)

klwi=1 k|wr=0

Finally, the distribution function of £ given x can be defined as

Pe(§ = N) = po ({w € QI¢(w) = N}) (3)

where NV is a nonnegative integer vector.

2.2 Tailored L-shaped method

Problem (1) is solved by a tailored L-shaped method. To make problem (4) tractable, we reformu-
late this non-linear stochastic program into a problem with finite many probability distribution.
Especially for handling the non-linearity contained in function P,, we partition feasible set X
into a collection of disjoint subsets (Xy)4ep, where each subset indicates a distinguished proba-
bility distribution Py. Let 1 : X — {0, 1} be the characteristic function of X;. By incorporating
decision-specific distributions, problem (1) is equivalently reformulated as follows:

max{ — Z chisvi + Z 14(2)Ep, [Q(x, s,f)] ‘(x, s) € X} (4)

z,s
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We solve (4) with one extensive version of the L-shaped method which includes the distribution-
specific L-shaped cuts. The method operates by iteratively solving the Relaxed Master Problem
(RMP) and adding distribution-specific L-shaped cuts at the identified distribution once the
optimality condition is violated.

max{ — > Y Chisyi + ¢¢ > 0, (z,5) € X} (RMP)

25,9 veV iel

For accelerating the solving process of the proposed L-shaped algorithm, we delve into strate-
gies of rapid computation of subproblems and valid inequalities. Specifically, exact algorithms
are developed for solving the integer recourse problems Q(z,s,&). We provide analytical dual
solutions of problem Q(z, s, &), which facilitate the generation of non-trivial continuous cuts.

3 Results

We generate 9 groups of synthetic instances representing real-world carsharing systems with
small, medium and large service regions, each of which is pre-divided into 3, 4, or 5 pricing
zones. The service region is represented by a rectangular area composed of 1K M x 1K M small
units, the center of which can be viewed as the locations of stations either in station-based or
free-floating carsharing systems. We create the small, medium and large service regions with
grids of 5 x 3, 6 X 4, and 7 x 5 stations, respectively. Under each instance group, a total number
of 36 instances are created with 9 different combinations of vehicle and customer volumes, and
4 different numbers of scenarios, i.e., 5, 20, 50, and 100 per distribution. We assume that the
discrete pricing levels range from 0 to 4 Euro with a separation of 1 Euro. The number of
distributions (i.e., |D|) is determined by raising the number of pricing levels |£| to the power of
the number of zones | Z|, calculated as \EUZ|. In our experiments, we have 125, 625, and 3125
distributions in total for instances with 3, 4, and 5 zones, respectively.
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The computational performance of the proposed distribution-specific L-shaped method (D-LS
in the following) is compared to that of commercial solver (here, Gurobi 11.0.1) which solves the
equivalent deterministic MILP formulation of problem (4) given a 1-hour time limit. For small
instances with 15 stations and 5 scenarios per distribution that can be solved to optimality with
10~ tolerance by the solver, we observe that the average solution time is 843.54 seconds, while
D-LS solves the corresponding instances with an average time of 14.05 seconds. As the curse
of dimensionality intensifies with increasing problem scale, the problem becomes intractable for
solver when the number of scenarios exceeds the order of 10*. This occurs earliest in instances
with 4 zones and 20 scenarios per distribution, which result in a total of 1.25 x 10* (calculated
by 5% x 20) scenarios.

For all tested instances, compared to the solver, the D-LS algorithm increases the average
percentage of solved instances from 23.77% to 70.37%, as shown in Table 1. This percentage
further rises to 78.70% for D-LS when the optimality gap is set to 0.5%. Additionally, the D-LS
algorithm demonstrates strong computational performance in terms of optimality gap, achieving
an average of 1.06% and a worst-case gap of 3.25% across all instance groups.

Table 1 — Number of solved instances comparison of the solver and D-LS algorithm on all in-
stances. The optimality gap is computed as |best_bound-objective_value|/|objective_value

# Solved Instances #Optimality Gap
# Stations  # Zones # Distributions Solver D-LS D-LS (Gap=0.5%) Solver D-LS
15 3 125 25/36 36/36 36/36 3.30% 0.00%
24 3 125 15/36  32/36 32/36 - 0.07%
35 3 125 11/36 12/36 30/36 - 0.85%
Zones =3 Avg. 51/108 80/108 98,/108 - 0.31%
15 4 625 13/36  35/36 35/36 - 0.09%
24 4 625 8/36 26,36 29/36 . 0.97%
35 4 625 0/36 14/36 21/36 - 2.35%
Zones =4 Avg. 21/108 82/108 85/108 - 1.13%
15 5 3125 5/36 34/36 34/36 - 0.10%
24 5 3125 0/36 17/36 21/36 . 1.92%
35 5 3125 0/36 15/36 17/36 - 3.25%
Zones = 5 Avg. 5/108  66/108 72/108 - 1.75%
Avg. 23.77% 70.37% 78.70% 1.06%
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