
Non-myopic Matching and Rebalancing in Large-Scale
On-Demand Ride-Pooling Systems Using Simulation-Informed

Reinforcement Learning
Farnoosh Namdarpour, Joseph Y. J. Chow*

C2SMARTER University Transportation Center, New York University Tandon School of
Engineering, Brooklyn, NY, USA

farnoosh@nyu.edu, joseph.chow@nyu.edu
* Corresponding author

Extended abstract submitted for presentation at the 12th Triennial Symposium on
Transportation Analysis conference (TRISTAN XII) June 22-27, 2025, Island of Okinawa

March 25, 2025

Keywords: ride-pooling, ride-sharing, reinforcement learning, fleet dispatch, vehicle rebalancing.

1 INTRODUCTION

Ride-pooling or ride-sharing refers to a system where passengers with different ride requests
share one vehicle, offering greater efficiency for service providers and more affordable rides for
customers compared to ride-hailing where only one passenger is onboard the vehicle with the
driver. Ride-pooling can help reduce traffic congestion and environmental impacts. However,
matching vehicles and riders efficiently and rebalancing the idle vehicles remains a challenging
task. Operators value higher ridership and reduced vehicle distance traveled, while riders pri-
oritize shorter waiting and in-vehicle times. Additionally, in a ride-pooling system, considering
passengers already onboard the vehicle adds another layer of complexity when finding efficient
matches for future requests. The system’s efficiency depends on an optimization algorithm ca-
pable of balancing the priorities of both riders and operators.

In a dynamic ride-pooling system, ride requests are submitted over time while the system
attempts to find a vehicle for each request once submitted. Similarly, it attempts to reposition
vehicles at different time steps. The vehicle-request matching problem and vehicle rebalancing
problem are both sequential decision problems. Decisions made at a certain time can impact
the system in the future highlighting the importance of considering the long-term impact of
decisions. Among the non-myopic optimization methods for sequential decision making, rein-
forcement learning (RL) has shown promising results.

While RL has been widely applied to ride-hailing systems, it is less explored in ride-pooling
systems due to the more complex nature of the problem. Most existing RL-based papers on
ride-pooling treat each vehicle as an individual agent, applying the trained model independently
to each one. However, Didi’s statistics have shown that centralized fleet dispatch, where the
platform assigns vehicles to riders instead of vehicles being the decision-makers, can significantly
improve system efficiency (Xu et al., 2018).

While not directly related to ride-pooling, applications of physics-informed RL have gained
traction in recent years in which RL is combined with model-based approaches to leverage the
structure of the problem captured by the model. In this study, we build upon the work of Xu
et al. (2018), which uses RL for matching in ride-hailing systems, but extend it to ride-pooling
systems and add vehicle rebalancing operations using simulation models to help inform on the
structure of the decision for the learning mechanism, i.e. simulation-informed. This is one of
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Figure 1 – Proposed framework.

the first studies to propose a non-myopic RL approach for real-time matching and rebalancing in
large-scale ride-pooling systems with a central dispatch unit. We propose an offline approach to
learn the spatiotemporal patterns of supply and demand from episodes of experience generated
in a simulated ride-pooling environment with historical demand data and propose online non-
myopic policies to use the learned value functions from this simulation-informed process for
making real-time matching decisions and rebalancing the idle vehicles.

2 METHODOLOGY

Vehicle dispatching in a ride-pooling system is a sequential decision problem that can be modeled
as a Markov Decision Process (MDP). The main components of the MDP are defined below.

Agent: Although from a global perspective, there is only one centralized agent making dis-
patch decisions, the system is defined from a local perspective to simplify the model components,
treating each vehicle as an agent, while individual vehicles are not differentiated.

State: The service operating time is divided into several time periods, e.g. five-minute
intervals, and the service area is divided into multiple zones. The state of each agent is defined
by the spatiotemporal status of the vehicle.

Action: For the matching problem, each agent has two defined actions: serving a new request
or continuing its previous schedule without changes. Similarly, for the rebalancing problem, each
idle agent has two actions: repositioning to another zone or remaining idle.

Reward: An agent’s reward at time index t is defined as the number of new requests that
have been assigned to the agent in that time index. By this definition, vehicles learn to be in
the zones at times they are needed. This definition reflects the optimization goal of the system,
which is maximizing the number of served requests while minimizing passengers’ travel times.

The proposed framework is a learning and planning approach with three main components
shown in Figure 1: offline learning, online planning for matching, and online planning for rebal-
ancing, which are explained in the following subsections.

2.1 Offline simulation-informed learning

A sample-based approach is employed for offline learning, where historical demand data is fed
into a ride-pooling simulator with a fleet size hyperparameter to generate simulated experiences,
i.e. "simulation-informed". The simulator fleet size is set to a large value to ensure no request
rejections occur in the system, thereby capturing all spatiotemporal demand-supply patterns.
This can only be effectively achieved in a simulated environment, where control over variables
allows for a thorough exploration of different possible scenarios. The simulator follows a fixed
policy, e.g. a myopic policy, for assigning vehicles to passengers. The n-step temporal difference
(TD) method, which combines the TD and Monte Carlo methods by considering the observed
rewards of n steps ahead, is used as the model-free method for policy evaluation to learn value
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functions from simulated-informed samples. The discounted return Gv
t:t+n using n-step TD for

vehicle v at state St is found in Eq. 1.

Gv
t:t+n = rvt+1 + γrvt+2 + ...+ γn−1rvt+n + γnV (St+n) (1)

where n is the number of future steps considered, rvt+i is the immediate reward at time t+ i
for vehicle v, γ is the discount factor, and V (St+n) is the value of state St+n.

2.2 Online planning for matching

The online planning step for matching uses the learned value functions in the offline learning
step to make real-time matching decisions. For each submitted request, the simulator finds a
set of vehicles that meet the feasibility criteria (e.g. vehicle capacity, maximum wait time for
passengers) to serve the request. The central dispatch unit uses the online planning algorithm
to find the best vehicle among the feasible ones. The system’s objective is to optimize total
immediate and future gain, which is formulated as the objective function in Eq. 2 for each
matching decision.

argmax
v

(
Rv + γ

∆tS′
vV (S′

v)− γ∆tSvV (Sv)
)

(2)

The value in the parentheses represents the expected gain for serving the request by vehicle
v. The expected gain contains an immediate gain component (Rv) and a future gain component
which is represented by the discounted difference of vehicle state values before and after assigning
the new request represented by V (Sv) and V (S′

v), respectively. At any given time in the system,
the vehicle can have multiple stops on its scheduled route. We define the vehicle’s state by its
final scheduled stop, i.e. the last drop-off location and time. The immediate gain component
(Rv) is found using Eq. 3.

Rv = λ
(
c(v, ξ)− c(v, ξ′)

)
(3)

where c(v, ξ) is the current cost for (vehicle v, route ξ) and c(v, ξ′) is the cost after assigning
the new request to vehicle v. Parameter λ is used to scale the cost values to match the magnitude
of the state values.

2.3 Online planning for rebalancing

The learned value functions in the offline learning step are used to represent the relative demand
in each zone by dividing the zone’s state value at a given time by the sum of all zones’ state
values at that time. The relative supply in each zone at each time step is defined as the number
of vehicles in that zone divided by the total number of vehicles in the system. The difference
between the relative supply and demand is used to identify surplus and deficit zones. At each
time interval, the best idle vehicle in a surplus zone is found to reposition to a deficit zone,
following the same matching policy outlined in the previous section.

3 COMPUTATIONAL EXPERIMENTS

We modified the NOMAD-RPS simulator (Namdarpour et al., 2024) to implement our proposed
method in a simulation setting using the NYC taxi data (Taxi & Commission, 2024). To evaluate
the matching performance, the results were compared with two other matching algorithms across
various fleet sizes, without rebalancing idle vehicles. Subsequently, the rebalancing operation was
assessed against an alternative method. The algorithms tested are described below.

• Myopic: The myopic policy without rebalancing explained in Namdarpour et al. (2024)
used as the baseline.
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Figure 2 – Comparison of test results for different policies across different fleet sizes.

• NM-CFA: The CFA policy without rebalancing proposed by Hyytiä et al. (2012) which
has a tunable parameter for lookahead approximation.

• NM-RL: The proposed learning and planning framework in this study using RL to opti-
mize real-time matching decisions over a long-term horizon without rebalancing.

• NM-RL R-B: The basic rebalancing operation proposed by Alonso-Mora et al. (2017)
added to the NM-RL matching.

• NM-RL R-RL The RL-based rebalancing operation proposed in this study added to the
NM-RL matching.

The results in Figure 2 evaluate two measures from passengers’ perspective: in-vehicle time
and wait time, and two from the operator’s perspective: service rate (percentage of accepted
requests), and vehicle minutes traveled per passenger (VMT). Comparing the three matching
policies without rebalancing shows that NM-RL achieves the best results, increasing service rate
by up to 8.4% compared to a myopic policy and reducing passenger wait time and in-vehicle
time with a slight increase in VMT. The two vehicle-rebalancing policies further improve service
rate while the RL approach provides a more substantial reduction in passengers’ in-vehicle (up
to 12% reduction compared to NM-RL) and wait times (up to 27% reduction). However, this
improvement comes at the cost of up to 15% increase in VMT. This trade-off can be adjusted
by extending the rebalancing interval in the proposed approach.

Both matching and rebalancing results demonstrate that the proposed non-myopic approach
effectively captures long-term consequences of dispatch decisions, improving service from both
operators’ and passengers’ perspective. Further analysis of the results, including visualization of
learned state values for different hours of day and the impact of training set size on the algorithm
performance will be presented at the conference.
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