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1 INTRODUCTION

In recent years, the deployment of Connected Autonomous Vehicles (CAVs) has highlighted the
need for advanced traffic models capable of handling dynamic, high-density conditions while
ensuring safety and efficiency. Traditional traffic flow models struggle to accommodate the
complexities of CAV dynamics, particularly under conditions of bounded acceleration, where
sudden changes in speed and traffic density can lead to significant inefficiencies and congestion.
Bounded-acceleration traffic flow (BATF) models have been developed to address the limita-
tions of traditional models, particularly in representing traffic speed dynamics and accounting
for bounded acceleration Lebacque (2002). Traditional traffic models often lack the flexibility to
account for dynamic changes in traffic conditions and driver behavior, especially under partial
congestion or during rapid acceleration and deceleration phases. This results in an inability
to accurately model traffic in scenarios with a high degree of variability, which is increasingly
relevant with the adoption of Connected Autonomous Vehicles (CAVs). These models are espe-
cially relevant with the rise of CAVs, as they can be designed to optimize traffic flow through
controlled acceleration. By introducing bounded-acceleration constraints, BATF models aim to
improve safety, efficiency, and predictability in vehicle interactions, particularly in complex urban
and highway environments where unexpected slowdowns and acceleration may occur. Besides,
they are effective in partially congested traffic scenarios and, with a control scheme, regulate
traffic flow by controlling vehicle acceleration Jin & Laval (2018).

Several studies have explored bounded-acceleration models to better capture traffic dynam-
ics. Qiu et al. (2013) provided grid-free solutions to the Lighthill-Whitham-Richards (LWR)
traffic flow model with bounded acceleration. Lebacque (2003) introduced a two-phase model
distinguishing between equilibrium and bounded-acceleration phases. Leclercq (2007) and Jin &
Laval (2018) further refined these models, providing a unified approach to BATF. Recently Mean-
Field Game (MFG) frameworks offer promising foundations for optimizing vehicle behavior in
large systems but have not yet been fully adapted to the specific challenges posed by bounded-
acceleration traffic models. For example, Ameli et al. (2022) applied the MFG framework to
urban transportation, demonstrating its potential in optimizing departure time choices.

This study addresses the pressing question: How can a MFG framework be effectively tailored
to bounded-acceleration traffic models to optimize CAV trajectories and improve overall traffic
flow? We propose a novel approach that incorporates MFG within the constraints of bounded
acceleration, enabling a more adaptive and realistic optimization method for CAV traffic systems.
By designing an MFG framework that can respond to real-time variations in traffic density and
vehicle dynamics, this research contributes a significant advancement in traffic flow management
for CAVs. Specifically, the proposed MFG model optimizes vehicle trajectories in a manner that
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enhances system-wide efficiency, mitigates congestion, and supports the safe integration of CAVs
into urban and highway networks.

2 MODEL FORMULATION

In bounded-acceleration models, traffic flow is divided into two phases: equilibrium (EQ) and
bounded-acceleration (BA). The transitions between these two phases considering the trsffic
model of Lighthill–Whitham–Richards (LWR) is detailed in Lebacque (2003). The fundamental
equations for the conservation of vehicles and momentum are:{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) = ρa(ρ, u),

(1)

where ρ represents density, u is velocity, and a(ρ, u) is the acceleration, which is bounded by a
maximum value A. Therefore, the cost functional for each vehicle i is defined as:

Ji(u) =

∫ T

0

[
L(ρ(t, xi(t)), u(t, xi(t))) +

1

2
∥u(t)∥2

]
dt, (2)

where L is a Lagrangian representing the driving cost.
In traditional bounded-acceleration traffic flow models, the acceleration a is often defined as

a fixed function of vehicle density and velocity constraints. However, we adopt an alternative
approach by redefining acceleration within a set K(ρ, u) rather than as a strictly bounded param-
eter. This new formulation allows for a more flexible control mechanism, optimizing vehicle tra-
jectories and accommodating various traffic dynamics, especially within Connected Autonomous
Vehicle (CAV) systems. Rather than explicitly bounding acceleration through a fixed function,
we define a as a variable constrained by:

a ∈ K(ρ, u),

where the set K(ρ, u) is determined by the relationship between the velocity u and the equilibrium
velocity ue(ρ), given as:

K(ρ, u) =


[0, A] if u < ue(ρ),

[−βA, 0] if u > ue(ρ),

[−βA,A] if u = ue(ρ),

(3)

where A is the maximum allowable acceleration and βA represents the maximum allowable
deceleration. This formulation addresses potential inconsistencies that arise from simultaneously
defining acceleration as both the derivative of velocity in the optimal trajectory problem (Eq. 2)
and as a fixed function. By eliminating the dual definition of a, this approach also increases the
model’s adaptability and alignment with real-world traffic dynamics.

With this redefined acceleration set, we reformulate the optimal control problem (Eq. 2) as
follows:

mina
∫ T
0

(
L(ρ, u) + a2

2

)
dt∣∣∣∣∣∣∣∣

ẋ = u,
u̇ = a,
a ∈ K(ρ, u),
Initial conditions for x and u,

(4)

where x and u are the position and velocity of the vehicle, respectively, and a is the control
variable constrained within K(ρ, u). This formulation ensures positive vehicle speeds due to the
constraints defined by K(ρ, u).

To solve this optimal control problem, we define the Hamiltonian H for the system:

H(ρ, u, a, p, q) = L(ρ, u) +
a2

2
+ p · u+ q · a, (5)
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where p and q are adjoint variables. We then derive the reduced Hamiltonian H0 by minimizing
H with respect to a:

H0(ρ, u, p, q) = min
a∈K(ρ,u)

H(ρ, u, a, p, q), (6)

which yields:

H0(ρ, u, p, q) = L(ρ, u) +
a2

2
+ p · u+ q · a, a = ΠK(ρ,u)(−q), (7)

where ΠK(ρ,u)(.) denotes the projection operator onto K(ρ, u). The projection operator p[a,b](y)
is defined as:

p[a,b](y) =


a if y ≤ a,

b if y ≥ b,

y if a ≤ y ≤ b,

(8)

allowing us to express ΠK(ρ,u)(.) as follows:

ΠK(ρ,u)(y) =


p[0,A](y) if u < ue(ρ),

p[−βA,0](y) if u > ue(ρ),

p[−βA,A](y) if u = ue(ρ).

(9)

In this model, the Hamilton-Jacobi equation for the value function V (x, u, t) is defined as:

∂tV +H0 (ρ, u, ∂xV, ∂uV ) = 0,
V |t=T = 0,

(10)

where V has a terminal value of zero due to the absence of a specific terminal criterion.
The coupled Partial Differential Equations (PDEs) in the MFG system therefore can be

formulated for bounded-acceleration traffic flow is therefore reformulated as follows:
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) = ρa(x, t),

∂tV +H0 (ρ, u, ∂xV, ∂uV ) = 0,

a = ΠK(ρ,u) (−∂uV ) ,

(11)

where the control variable is now the acceleration a, rather than the velocity u in the classical
formulation and we retain the Eulerian form of the acceleration equation, where a depends on
both x and t. (The dependence of a on u, a function of x and t, may also be necessary for full
model fidelity).

The proposed MFG formulation captures the more complex acceleration dynamics of CAVs
in partially congested conditions and enables more precise optimization of vehicle trajectories.

3 NUMERICAL EXPERIMENTS

In this section, we present preliminarily results of the numerical simulations to demonstrate the
effectiveness of the proposed MFG framework in optimizing vehicle trajectories within bounded-
acceleration traffic models. The implementation focuses on evaluating how the MFG model
adapts to varying traffic densities and vehicle interactions, using a combination of fixed-point
algorithms and a fictitious play technique to solve the coupled PDEs in Eq. 11. This iterative
algorithm designed to converge to an ϵ-Nash equilibrium, ensuring that each vehicle’s trajectory
optimally responds to the collective movement of others. The fictitious play approach updates
each agent (vehicle) strategy iteratively based on anticipated responses of the entire field of
vehicles. To solve the MFG system’s coupled PDEs numerically, we discretize the equations over
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Figure 1 – Comparison of Velocity Standard Deviation over time step

a spatial-temporal grid, leveraging finite difference methods for spatial derivatives and explicit
time-stepping. Each iteration in the fixed-point algorithm includes calculating the projected
acceleration set K(ρ, u) for each vehicle based on the local traffic density ρ and velocity u. By
constraining acceleration within this set, we achieve realistic and bounded vehicle movements,
crucial for CAV applications where safe, gradual speed changes are required.

The model is applied an urban traffic corridor simulated using parameters derived from the
Next Generation Simulation (NGSIM) dataset I-80 study area, which provides high-resolution
traffic flow data. We specifically selected segments with varied traffic density and congestion
levels to observe the MFG framework’s adaptability to different driving conditions. The simula-
tions included morning peak traffic scenarios, during which rapid deceleration and congestion are
common. Initial conditions were set to represent realistic starting positions, velocities, and accel-
eration bounds, consistent with observed urban traffic flows in the dataset. Preliminary results for
velocity standard deviation, shown in Fig.1, indicate that the MFG framework optimizes vehicle
trajectories more effectively than Baseline BATF models, yielding realistic and smoother traffic
flow across varying densities. Initially, the MFG scenario achieves a lower standard deviation
than the reference scenario, demonstrating reduced speed variability and smoother transitions,
which help mitigate congestion. After time step 50, however, the reference scenario’s standard
deviation falls below that of the MFG, reflecting a late-stage stabilization. This suggests that
while the baseline model may eventually stabilize, it lacks the MFG model’s adaptive responsive-
ness, which dynamically adjusts trajectories based on real-time traffic changes. This continuous
adaptability of the MFG framework enhances traffic flow uniformity and supports efficient traffic
management, showing promise for real-time optimization in smart city infrastructure.
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