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1 INTRODUCTION

Vehicle Routing Problems (VRPs) are combinatorial optimization problems with profound ap-
plications in logistics, transportation, and supply chain systems (Laporte, 2009). Iterative search
heuristics, e.g., LKH-3 (Helsgaun, 2017) and HGS (Vidal, 2022), are state-of-the-art VRP solvers,
which progressively refine solutions through local search and metaheuristics. However, as de-
picted in Figure 1, existing methods often involve redundant searches, with a significant portion
of edges remaining unchanged during search steps, especially in later search stages. This limits
both efficiency and scalability, particularly for large-scale instances with over 1,000 customers.

Figure 1 – Percentage of re-optimized edges during iterative search process: using LKH-3 on
100 CVRP instances of sizes 2,000 and 3,000, we observe that many edges remain unchanged,
particularly in later optimization stages. See Section 3 for CVRP setting details.

Building on this critical observation, we present Learn-to-Segment (L2Seg), a novel ap-
proach to accelerate iterative VRP solvers by leveraging deep learning to dynamically identify
stable solution segments, enabling re-optimization of only the remaining parts. We first introduce
a generic decomposition technique, First-Segment-Then-Aggregate (FSTA), for VRPs. FSTA
first segments the VRP solutions by grouping stable portions, and then represents each segment
into hypernodes with aggregated attributes of nodes in the segment. It preserves optimality while
enabling problem reduction across iterations. We then design a customized graph neural network
with a tailored loss function to predict segments by estimating edge re-optimization probabilities
dynamically at different optimization stages. Empirical results on Capacitated VRP (CVRP)
show that L2Seg accelerates various traditional and learning-guided state-of-the-art VRP solvers
by up to 32% while also enhancing solution quality. Notably, our L2Seg has strong potential for
extension to other VRP variants and integrating with other decomposition frameworks, holding
promise to offer great flexibility and performance gains for various iterative VRP solvers.
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2 METHODOLOGY

For brevity, we focus on the CVRP here, with our ongoing work extending the framework to other
VRP variants. A CVRP instance, denoted as P , is defined on an undirected graph G = (V,E),
where V = {0} ∪ {1, ..., n} represents depot (0) and customers; and E is the distance matrix.
Each customer v ∈ V has a demand dv. The objective is to suggest routes with minimal length
L for a fleet of vehicles with capacity C, such that all vehicles start and end at the depot, each
customer is served exactly once, and the total demand on each route does not exceed C.

Figure 2 – Overview process of our First-Segment-Then-Aggregat (FSTA) technique. Depot is
shown in white; nodes with the same color belong to the same routes of the original solution R.

2.1 First-segment-then-aggregate technique

At each search step, we employ FSTA to reduce the search redundancy and the scales of decision
variables. Given a solution R = {R(1), ..., R(m)} with m vehicles and total route length LR,
R(i) =

(
0, r

(i)
1 , ..., r

(i)

|R(i)|−2
, 0
)

is the route for the ith vehicle. A segment is defined as a sequence

of consecutive edges within any route R(i) and is represented by an ordered list of customers,
S = (v1, v2, . . . , v|S|) ⊆ R(i). The FSTA process consists of three steps. Specifically,

1) Segment Partitioning: FSTA groups the customers in each route R ∈ R into several
distinct segments, ensuring that no nodes are shared between any two segments.

2) Hypernode Aggregation: FSTA aggregates each segment S and replaces it with two
hypernode S′ = (v′1, v

′
2), with the locations of the two nodes being the first and the last

nodes of S (v′1 = v1, v′2 = v|S|). The demands are set as dv′1 = dv′2 = 1
2

∑
v∈S dv. Additional

constraints are imposed to keep including the edge (v′1, v
′
2) in the solutions.

3) Solution Recovery: We solve the reduced problem P ′, obtain the refined solution R′ for
P ′, and recover the corresponding solution Ropt for P by replacing each S′ back to S.

Figure 2 demonstrates a overview of our FSTA. Note that step 2 of FSTA accurately preserves
the structure of the original solution, allowing FSTA to create smaller subproblems at each step
without affecting search optimality. In the literature, FSTA is somewhat conceptually related
to the path decomposition in Santini et al. (2023), which typically clusters geographically close
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routes using route barycenters. However, FSTA permits segments of arbitrary lengths, allows
reversal of the segments, and aggregates segment attributes for a more compact representation.
Moreover, we introduce an automated L2Seg approach that leverages deep learning to address
the challenge of identifying stable segments (step 1 of FSTA) at each search step dynamically.

Figure 3 – Overview of our label generation process. To enhance label generation, we assign
different random seeds to the Lookahead Expert for diverse solution refinements.

2.2 Learning to segment (L2Seg) framework

Predicting stable segments corresponds to estimating the re-optimization probability for each
edge. Our L2Seg network takes the CVRP instance P and current solution R as input and
outputs the re-optimization probability per edge. Node features include coordinates, demands,
and a one-hot encoding indicating whether a node is a depot; edge features include length and
a one-hot indicator for solution membership. We design an architecture consisting of a graph
neural network (GNN) encoder and a transformer-based decoder with one transformer followed
by a sigmoid activation function to produce the edge-re-optimization probabilities. Note that we
simplify edge selection by treating it as node selection, removing both connected edges for the
selected nodes. Once edges are removed, we apply FSTA to aggregate the remaining segments
in the route, creating a simpler subproblem and accelerating the search.

We train the model by imitating a Lookahead Expert to accelerate a backbone iterative
search heuristic (LKH-3, LNS, and L2D in this work). At each search step, the Lookahead Expert
performs a one-step search based on the backbone heuristic that changes the current solution R to
a potentially improved solution R′. We then record the edges that were re-optimized, along with
the associated objective value improvements δ. These re-optimized edges serve as labels for our
network, with δ as weights to highlight label significance. We also incorporate a regularization
term to guide the model in estimating the number of edges needing re-optimization, based on
the count determined by the Lookahead Expert. Let pv represent the output probability of re-
optimizing the two edges connected to node v, and let Vre-opt denote the set of nodes selected by
the lookahead expert for re-optimization. We design the loss function as follows:

Loss(p) = − 1

|Vre-opt|
∑

v∈Vre-opt

δ log(pv) + α(
∑
v∈V

pv − |Vre-opt|)2

where α is a hyperparameter that balances the two loss terms. The first term employs an entropy-
like loss to increase the re-optimization probability of suboptimal edges based on the importance
weights δ, while the second term prevents the model from disrupting too many stable edges.

Lastly, to generate the training dataset, we use multiple seeds to augment each instance P as
shown in Figure 3, with P sampled from a problem distribution. We train a single model that
can accelerate the backbone solver for any new instance from this distribution at each time step.

3 RESULTS & DISCUSSION

In this section, we show that L2Seg can improve the efficiency and effectiveness of existing
iterative search heuristics, demonstrating its broad applicability for boosting various solvers.
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Table 1 – Objective value comparisons, with improvement % over each heuristic w/o L2Seg.

Methods CVRP2000 CVRP3000 CVRP5000
Obj.↓ Impr.↑ Obj.↓ Impr.↑ Obj. ↓ Impr.↑

LKH-3 43.33 - 46.12 - 51.23 -
LKH-3+L2Seg 42.30 2.38% 45.89 0.50% 50.12 2.17%
LNS 41.21 - 45.85 - 49.97 -
LNS+L2Seg 40.75 1.12% 45.42 0.94% 49.52 0.90%
L2D 41.71 - 45.78 - 49.67 -
L2D+L2Seg 40.65 2.54% 45.24 1.18% 49.22 0.91%

Table 2 – Solve time comparisons, with improvement % over each heuristic w/o L2Seg.

Methods CVRP2000 CVRP3000 CVRP5000
Time(s) ↓ Impr. ↑ Time(s) ↓ Impr. ↑ Time(s) ↓ Impr. ↑

LKH-3 45.12 - 37.25 - 35.45 -
LKH-3+L2Seg 37.51 16.87% 26.33 29.32% 27.44 22.60%
LNS 41.85 - 33.52 - 32.45 -
LNS+L2Seg 28.35 32.26% 27.12 19.09% 25.66 20.92%
L2D 31.42 - 31.24 - 26.33 -
L2D+L2Seg 24.12 23.23% 25.21 19.30% 24.21 8.05%

Data. We evaluate L2Seg on clustered CVRPs with sizes 2000, 3000, and 5000 and capacity
500, 1000, and 1500, respectively. The clustered distribution is created by sampling a centre
(xc, yc) in the unit square, an angle ϕ from 0◦ to 180◦, and assigning 4 more nodes at locations
of (xc + i× rc cosϕ, yc + i× rc sinϕ), i ∈ {−2,−1, 1, 2}. We set rc to 0.01 for this work.

ML Setup. We train L2Seg with learning rate 10−3 on a machine equipped with one V100
GPU and 48 CPU cores. The training dataset contains around 20,000 labels. We use α = 5 and
training takes around 12 hours. We test our model on 100 CVRP instances.

Iterative Search Heuristics. We employ LKH-3, large neighborhood search (LNS), and
Learning to delegate (L2D) from Li et al. (2021), which represent state-of-the-art iterative search
heuristics in their respective categories: heuristics, metaheuristics, and learning-guided heuristics.

Metrics. We either fix the time budget to 200 seconds and compare the resulting solution
quality, or we fix the solution performance at 95% of the improvement achieved by LKH-3 within
200 seconds and compare the time required by each method to reach this benchmark.

The empirical results corroborate that L2Seg not only accelerates state-of-the-art iterative
solvers up to 32% (Table 2) but also enhances solution quality (Table 1). It also shows that L2Seg
has the potential to enhance various iterative VRP solvers. Ongoing work aims to extend L2Seg
to additional VRP variants, more realistic instances, and benchmark it against more baselines.
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