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1 Introduction

Companies like Waymo and Cruise are deploying electric robo-taxi services across the U.S., but
these vehicles face operational challenges due to their relatively short range, driven by the high
battery consumption needed for sensing and computation. Efficiently dispatching, repositioning,
and charging these fleets in a dynamic, stochastic environment is a complex problem. In this
article, we model robo-taxi fleet operations as a Markov Decision Process (MDP) and propose
a deep reinforcement learning algorithm called Atomic-PPO to compute the optimal policy.
Atomic-PPO builds on the classical PPO algorithm (Schulman et al., 2017) but introduces
a novel decomposition of the fleet routing policy by assigning atomic actions sequentially to
individual vehicles. This approach reduces the action space from being exponential in fleet size
to being a constant, significantly lowers the complexity of policy training.

We evaluate the effectiveness of Atomic-PPO using NYC taxi data and show that our method
achieves a total reward that is a high percentage of the provable upper bound, derived from the
system’s fluid limit analysis (Theorem 1). Additionally, we provide insights into how system
performance depends on factors such as charging speed, vehicle range, and charger allocation.
Our model and results extend the reinforcement learning literature on non-EV ride-hailing dis-
patching (Feng et al., 2021, Tang et al., 2019) and matching (Azagirre et al., 2024), and offer
a new method for training RL algorithms in EV ride-hailing dispatching (Turan et al., 2020,
Kullman et al., 2022, Luke et al., 2021) that achieves fast training on a large problem scale.

2 Model

We consider a transportation network with V service regions. A fleet of N electric robo-taxi
vehicles with battery size B are operated by a central planner to serve customer trip requests.
For each pair of (u, v) ∈ V × V , we assume that the battery consumption for traveling from
u to v is a constant buv ∈ R≥0. A set of chargers with different per unit-time charging rates
δ ∈ ∆ are installed in the network. The minimum charging time is J time steps. We model
the operations of a ride-hailing system as a discrete-time MDP with finite time horizon T . At
each time step t = 1, . . . , T , the number of trip requests between each u-v pair follows a Poisson
distribution with mean λtuv, and trip duration being a constant τ tuv. A vehicle must be assigned
to a rider within Lc ≥ 0 time steps, and the rider will wait at most Lp ≥ 0 time steps for the
assigned vehicle to arrive at their origin. Otherwise, the rider will leave the system.

A vehicle is associated with type (v, η, b) if it is traveling to or charged at region v, with
remaining time η, and battery level b upon finishing the task. We note that a vehicle may be
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assigned to pick up a new rider before completing its current trip or charging period as long
as η ≤ Lp. Let C denote the set of all vehicle types. A trip order is associated with the type
(u, v, ξ) if it originates from u, heads to v, and has been waiting for vehicle assignment in the
system for ξ time steps. We use O to denote the set of all trip types. A charger is associated
with type (v, δ, j) if it is located in region v with rate δ and is j time steps away from being
available. We use W to denote the set of all charger types.

State. The state vector st ∈ S records the number of trip orders of each type, the number
of vehicles of each type, and the number of chargers of each type at t.

Action. At each t, a central planner selects a fleet routing action at := (f tc , e
t
c , q

t
c , p

t
c)c∈C .

The term f tc := (f tc,o ∈ N)o∈O represents the number of vehicles of type c := (v, η, b) assigned
to each trip type o. Similarly, etc := (etc,v ∈ N)v∈V represents the number assigned to reposition
to destination v, and qtc := (qtc,δ ∈ N)δ∈∆ the number to charge at stations with rate δ. Finally,
ptc ∈ N represents the number assigned to continue their current action (referred as the passing
action). We denote the set of fleet routing actions that are feasible given state s as As. Given
st and at, the state transition to st+1 at time step t+ 1 includes the change of fleet state (trip
fulfillment, repositioning, and charging), order state (trip fulfillment and new trip arrival) and
charger state update. We omit the expression of state transition due to space limit.

Policy. The central planner determines a fleet routing policy π := {πt : S → ∆(A)}t∈[T ]
that maps the system state to a distribution of feasible fleet routing actions at each time step t,
where πt(a|s) is the probability of routing the fleet according to a given state s at time t.

Reward. At each time step t, the reward of fulfilling a trip request between u and v is
rtf,uv ∈ R≥0, and the reward of repositioning between u and v is rte,uv ∈ R≤0. Additionally, the
reward of charging a vehicle at time t is rtq,δ ∈ R≤0. We can compute the total reward at t
given the fleet routing action at, denoted as rt(at). Given any initial state s, the goal of the
central planner is to compute the optimal policy π∗ that maximize the expected total reward
R(π|s) := Eπ

[∑T
t=1 r

t(at)|s
]
. We study the fluid limit of the MDP and construct a fluid upper

bound of the optimal total reward.
Theorem 1 (Fluid upper bound (informal)) We construct a fluid-based linear program
with optimal value R̄ that is an upper bound of R(π∗|s) for all initial state s ∈ S.

3 Atomic Proximal Policy Optimization

3.1 Action space reduction. One critical challenge of computing the optimal fleet routing
policy π∗ is that the dimension of fleet routing action a and |A| scales exponentially with the
fleet size N and the number of vehicle types |C|. To address this challenge, we propose an
atomic action policy: Instead of determining the entire fleet routing policy, we assign atomic
action Ã := {(f̂o)o∈O, (êv)v∈V , (q̂δ)δ∈∆, p̃} to each vehicle sequentially, where f̂o is to fulfill a trip
of type o, êv is to reposition to region v, q̂δ is to charge with rate δ, and p̃ is to pass.

We now present the procedure of atomic action assignment. In each time step t, vehicles
are arbitrarily indexed from 1 to N , and are sequentially selected. For a selected vehicle n, the
atomic policy π̃t : S ×C → ∆(Ã) maps from the tuple of system state stn before n-th assignment
and the selected vehicle’s type cn to a distribution of atomic actions. The system state stn
transitions after every single vehicle assignment with st1 = st, and stN transitions to st+1 after
assigning the last vehicle and trip arrival at t+1 is realized. For any atomic action ã and vehicle
type c, the generated reward rt(ã, c) is the same as that defined in Sec. 2, and the total reward
of each time step t is the sum of all rewards generated from each atomic action assignment in
t. Our atomic action policy can be viewed as a reduction of the original fleet routing policy in
that any realized sequence of atomic actions corresponds to a feasible fleet routing action with
the same reward of the time step. The atomic action policy significantly reduces the dimension
of the policy function since Ã does not scale with the fleet size or the number of vehicle types.
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3.2 Atomic PPO with state reduction. We develop the Atomic proximal policy optimization
(Atomic-PPO as in Algorithm 1) to compute the optimal atomic policy π̃∗. This algorithm
builds on our atomic policy reduction and the classical PPO method. In our Atomic-PPO,
we use neural networks to approximate the value function Ṽ t

ψ : S̃ → R (resp. policy function
π̃tθ : S̃ ×C → ∆(Ã)), where ψ (resp. θ) denotes the network parameters. Here, we further reduce
the state space by clustering battery levels into three categories: low, medium, and high, with
flexibility to refine this granularity if computational resources allow. Trip orders are aggregated
by recording only the number of requests originating from or arriving at each region, instead of
tracking origin-destination pairs, further reducing the state space.

Algorithm 1: The Atomic-PPO Algorithm
Inputs: Number of policy iterations J , number of episodes K, initial policy π̃θ0 .
for policy iteration j = 1, . . . , J do

Run policy π̃θj−1
for K episodes each of which is a single day operations.

Store trajectory of system state st,(k)n , vehicle type ct,(k)n , atomic action ã
t,(k)
n , and

reward rt(ã
t,(k)
n , c

t,(k)
n ) for each assignment n, time step t ∈ T and episode k ∈ K.

Compute empirical estimate of value function V̂
t,(k)
n (s̃

t,(k)
n ) as the accumulated

reward of realized trajectory starting from n-th assignment at time step t in k-th
episode. Update value network by minimizing

∑
k,t,n(Ṽ

t
ψ(s̃

t,(k)
n )− V̂

t,(k)
n (s̃

t,(k)
n ))2.

Estimate advantage functions by

Âθj−1(s̃
t,(k)
n , ãt,(k)n , ct,(k)n ) :=

{
rt(ã

t,(k)
n , c

t,(k)
n ) + Ṽψ(s̃

t,(k)
n+1 )− Ṽψ(s̃

t,(k)
n ), If n < N,

rt(ã
t,(k)
n , c

t,(k)
n ) + Ṽψ(s̃

t+1,(k)
1 )− Ṽψ(s̃

t,(k)
n ), If n = N.

Obtain the updated policy network π̃θj by maximizing surrogate objective function

L̂(θj , θj−1) :=
1

K

∑
k,t,n

min

(
π̃θj (ã

t,(k)
n |s̃t,(k)n , c

t,(k)
n )

π̃θj−1(ã
t,(k)
n |s̃t,(k)n , c

t,(k)
n )

Âθj−1(s̃
t,(k)
n , ãt,(k)n , ct,(k)n ),

clip

(
π̃θj (ã

t,(k)
n |s̃t,(k)n , c

t,(k)
n )

π̃θj−1(ã
t,(k)
n |s̃t,(k)n , c

t,(k)
n )

, 1− ϵ, 1 + ϵ

)
Âθj−1(s̃

t,(k)
n , ãt,(k)n , ct,(k)n )

)
.

end
return policy π̃θJ

4 Numerical experiments

We conduct numerical experiments of routing electric robo-taxi in New York City (NYC) Man-
hattan area. Using the NYC ride-hailing dataset in 2022, we calibrate the trip demand distri-
bution of every 5 min time interval (time step) from 0:00 to 24:00 Mondays to Thursdays. We
cluster all taxi zones in Manhattan into 10 regions, and the trip demand distribution is aggre-
gated for each pair of origin and destination regions. We consider fleet size N = 300 and scale
down the trip demand based on the actual fleet size during rush hours. Our baseline setting sets
the full vehicle battery range as 130 miles following the Nissan Leaf E 2023 model (215 miles
if driven by humans) and the fact that robo-taxi on average spends 40% of energy on sensing,
computation and communication. Our baseline setting assumes that each region has abundant
number of fast chargers (75kW). Furthermore, our simulation incorporates the nonlinear charg-
ing rate, time-varying charging and repositioning cost and trip reward. With 30 CPUs, it takes
less than 20 minutes to finish a policy iteration of Atomic-PPO and the training for each case
can be completed within 3 hours. Using Microsoft Azure, the training of one case costs $15.

We find that our atomic PPO algorithm achieves total reward of $390K, which is 91% of the
fluid upper bound R̄ = $428K (recall Theorem 1). We also compare our Atomic-PPO against
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Revenue/R̄ Revenue
Atomic-PPO 91% $390K
Power of d 71% $310K

Fluid policy 43% $185K

Table 1 – Revenue comparison.

Setup Revenue
Benchmark 75 kW & 130 miles $390K

Slow Chargers 15 kW & 130 miles $335K
Double Range 75 kW & 260 miles $390K

Table 2 – Change of charging rates and range.

Figure 1 – Policy evaluation. (First row) Fleet status; (Second row) Trip fulfillment status.

two benchmark algorithms: (i) the power-of-d dispatching policy that fulfills a trip with a vehicle
with highest battery level among d closest vehicles within dispatch range (Varma et al., 2023),
and (ii) the fluid policy derived from randomized rounding of optimal solution of the fluid-
based LP. Table 1 shows that the performance of Atomic-PPO beats the benchmark algorithms
in terms of total revenue by a large margin. Figure 1 demonstrates that Atomic-PPO has a
uniformly higher percentage of fleet used for trip fulfilling, and higher trip fulfillment rate.

Apart from the baseline setting, we conduct experiments with other parameter settings and
find that (i) fast chargers can effectively increases revenue, while doubling the vehicle range
has negligible impact (Table. 2), and (ii) deploying a small number of chargers according to
ridership patterns (which concentrates in midtown Manhattan) can achieve comparable revenue
as that with abundant chargers, while uniform charger deployment is inefficient.

Allocation Uniform (# chargers) Concentrated (15 chargers)
10 20 30 40 Midtown Lower Manh. Upper Manh. Abundant

Revenue ($) 250K 375K 390K 390K 380K 225K 335K 390K

Table 3 – Impact of charger distribution in Manhattan on revenue.
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