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1 INTRODUCTION

Timetabling in railway systems is a critical task that ensures trains’ efficient and safe move-
ment while meeting passenger demands and operational constraints. Traditionally, timetabling
approaches are classified into macroscopic and microscopic levels and into cyclic (periodic) and
non-cyclic (aperiodic) timetables. Periodic timetables are commonly used for passenger trains
as they are convenient for passengers and infrastructure investments, whereas aperiodic timeta-
bles are more common for freight trains. At the macroscopic level, models like the Periodic
Event Scheduling Problem (PESP) are widely used for generating cyclic timetables in large-scale
strategic planning and support integrated planning such as passenger routing (Polinder et al.,
2021) and vehicle circulation (Lieshout, 2021). However, PESP does not guarantee feasibility at
the microscopic level, where detailed infrastructure constraints are critical. Microscopic Railway
Timetabling Problems (MRTPs), on the other hand, provide a detailed representation of the
infrastructure, including tracks, signals, and block sections (Leutwiler & Corman, 2023). The
MRTP ensures operational feasibility by optimizing infrastructure usage and conflicts. However,
these models are complex and computationally intensive.

Few models attempt to find cyclic microscopic timetables for large-scale networks, and those
typically employ heuristic or sequential methods, which do not guarantee optimality or feasibility
(Bešinović et al., 2016, Caimi et al., 2017). We present an exact approach that leverages decompo-
sition techniques to achieve microscopically feasible timetables at a large scale. Using real-world
data from a Swiss rail network, the results suggest that our method outperforms traditional
MRTP methods greatly thanks to our proposed aggregated cuts. Comparisons to macroscopic
equivalent formulations indicate that our model achieves better solutions, providing operators
with timetables that are strategically sound and operationally feasible at the microscopic level.

2 MODEL FORMULATION

We optimize the route and schedule of a set of periodic trains l ∈ L. We are given all trains to
schedule during one period T , so the timetable can be rolled out over multiple periods. We aim
to minimize total running and dwelling time, a common objective in PESP (Lieshout, 2021).

To define the route choices of each train l ∈ L across the network, we use a Train Flow
Network (TFN) (see Figure 1a) with nodes n ∈ Nl representing infrastructure decision points
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and arcs w ∈ Wl representing track segments between nodes. The binary variables xw ∈ {0, 1}
indicate whether a train uses a particular link w ∈ Wl.

BA

(a) Train Flow Network (TFN).

BA

BA

Commercial
Constraints

Itinerary
Constraints

(b) Commercial and itinerary constraints in the
Event Activity Network (EAN).

Figure 1 – Example of the network representations for a train.

To schedule each train l ∈ L on a microscopic level, we use an Event Activity Network
(EAN), where nodes refer to events e ∈ El, each associated with a timestamp te. Arcs refer to
activities a ∈ A, representing relationships between events (e.g., running and dwelling times).
The EAN is closely linked to the TFN, where each route in the TFN corresponds to a se-
quence of events and activities in the EAN. We classify the activities into itinerary, commercial,
and periodicity activities. Itinerary activities (AITI) represent the technical requirements, such
as running and dwelling times across different routes. Commercial activities (ACOM) capture
service-related requirements, such as scheduled arrival and departure times, and connections for
passenger transfers (e.g., see Figure 1b). Finally, periodicity activities (APER) are used to ensure
a cyclic timetable. These activities link the events across different periods, enforcing that services
are repeated each period T and on the same route. Since some trains may take longer than one
period T to complete their journeys, we need to roll out the timetable over k̂ =

⌈
∆
T

⌉
+1 periods

where ∆ denotes the maximum train run time.

A key challenge in timetabling is ensuring that trains do not conflict (i.e., use the same
infrastructure resource simultaneously). To prevent such conflicts, we model the occupation of
resources by defining entry and exit events in the EAN for each train’s use of a resource p ∈ P
and their respective times tentry

p , texit
p . We use binary variable zp to indicate if resource path p

is used by a train. To prevent conflicts between trains, we also define binary variables y(p,p′) to
indicate if the train using resource path p clears the resource before the train using resource path
p′ occupies it, for all conflicting pairs (p, p′) ∈ K.

Based on all these considerations, we present the Cyclic-MRTP (C-MRTP) model, which
integrates the temporal and spatial periodicity of train operations while considering infrastructure
usage and conflict avoidance. The model is formulated as follows:

min
∑

a=(i,j)∈ACOM

(tj − ti) (1a)

subject to:∑
w∈ρ(n)+

xw = 1, ∀l ∈ L, n ∈ N Source
l , (1b)

∑
w∈ρ(n)+

xw =
∑

w∈ρ(n)−
xw, ∀l ∈ L, n ∈ Nl \ (N Source

l ∪N Sink
l ), (1c)

lba · xw(a) ≤ tj − ti ≤ uba · xw(a) +M · (1− xw(a)), ∀a = (i, j) ∈ AITI, (1d)

lba ≤ tj − ti ≤ uba, ∀a = (i, j) ∈ ACOM, (1e)

zp ≥
∑

w∈Wp

xw − |Wp|+ 1, ∀p ∈ P, (1f)
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ypp′ + yp′p ≤ 1, ∀{p, p′} ∈ K, (1g)
ypp′ + yp′p ≥ zp + zp′ − 1, ∀{p, p′} ∈ K, (1h)

tentry
p′ − texit

p + δ ≥ M(ypp′ − 1), ∀{p, p′} ∈ K, (1i)

tentry
p − texit

p′ + δ ≥ M(yp′p − 1), ∀{p, p′} ∈ K, (1j)

te(k) = te(0) + kT, l ∈ L,∀e ∈ El : (e(0), e(k)) ∈ APER, ∀k ∈ {0, 1, . . . , k̂ − 1}, (1k)

x(k)w = x(0)w , ∀l ∈ L, w ∈ Wl, ∀k ∈ {1, . . . , k̂ − 1}, (1l)
te ∈ R+, ∀l ∈ L, e ∈ El, (1m)
ypp′ , yp′p ∈ {0, 1}, ∀{p, p′} ∈ K, (1n)
xw ∈ {0, 1}, ∀l ∈ L, w ∈ Wl. (1o)

The objective function (1a) minimizes the overall duration of commercial activities, a well-
established objective used by PESP models in railway timetabling. Constraints (1b)-(1c) enforce
flow conservation to ensure that each train selects precisely one path from origin to destination
where ρ(n)+ and ρ(n)− are the sets of outgoing and incoming arcs at node n, respectively.
Constraints (1d) ensure that itinerary activities are only enforced when the corresponding route
is selected where M is a sufficiently large constant, and Constraints (1e) enforce the time bounds
for commercial activities. Constraints (1f) ensure a resource path is activated only if the train
route uses a link of such path. We define Constraints (1g) to ensure that conflicting precedence
conditions cannot hold simultaneously, and Constraints (1h) to enforce that the precedence
constraints are only enforced when both resource paths p and p′ are used. Constraints (1i)-(1j)
ensure the gap between the trains’ entry and exit times on conflicting resource paths respects
the separation time δ. Constraints (1k) and (1l) define the temporal and spatial periodicity of
the schedule and route choices, respectively. For simplicity, we omit the period index in the
variables xw and te in all remaining constraints as they represent the base case of k = 0. Finally,
Constraints (1m)-(1o) define the nature of the decision variables.

3 A LOGIC-BASED BENDERS DECOMPOSITION METHOD

Even without periodicity, microscopic timetabling is a complex problem to solve. One promising
approach to handle this issue is using decomposition methods (Leutwiler & Corman, 2022) such
as logic-based Benders decomposition (LBBD). Exploiting the periodicity of the problem and
the itinerary activities as feasibility constraints, we present an LBBD method, where the C-
MRTP is split into a master optimization problem formed by Equations (1a),(1e) and (1m), and
a feasibility sub-problem comprising the full C-MRTP comprised in (1) without the objective
function. Solving the master problem yields a valid lower bound and a candidate solution for the
subproblem. If any constraints are violated in the subproblem, we generate logic-based Benders
cuts to update the master problem. Additionally, identifying these cuts provides a feasible
solution as an upper bound. We iteratively solve the master and subproblem, adding cuts until
convergence.

We propose to aggregate the cuts for LBBD in MRTP of Leutwiler & Corman (2022):

∨
d∈D

 ∑
a=(i,j)∈Ad

tj − ti ≥ δd

 , ∀D ∈ C (2)

where D represents a set of disjunctions, and for each disjunction d ∈ D, there is a corre-
sponding set of activities Ad that must be satisfied. The expression

∑
a∈Ad

(tj−ti) sums the time
differences between the events i and j for all activities a = (i, j) ∈ Ad, ensuring that the total
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separation across all relevant activities is at least δd, the minimum required separation for dis-
junction d. The disjunction

∨
D∈C ensures that at least one set of aggregated separations holds.

While the cuts from Leutwiler & Corman (2022) focus on cutting conflicts related to individual
events, our approach focuses on the activities between events. It allows us to aggregate several
conflicting constraints into a single cut, eliminating infeasible solutions more efficiently.

4 Computational Results

We applied our model to a Swiss railway network operated by Rhätische Bahn (RhB), consisting
of 14 lines (28 trains/hour), 102 stations, and 385 km of single- and multi-track sections. Five
instances were generated, representing 20% to 100% of lines; each smaller instance is a subset
of the larger. We compared three models: Direct Model (MIP), Logic-Based Benders Decompo-
sition (LBBD) with the cuts from Leutwiler & Corman (2022), and our proposed method with
aggregated cuts (LBBD-AGG). All runs were warm-started with a heuristic solution to ensure
comparability in case of timeouts (5 h). Each instance was solved three times per method on
four cores with GUROBI 11.0. Table 1 summarizes the average performance for each approach.

Network
Size

MIP LBBD LBBD-AGG
Time (s) Gap Time (s) Gap Iterations Cuts Time (s) Gap Iterations Cuts

20 % 2.4 0.0 2.7 0.0 10.3 276 0.6 0.0 4.0 47.0
40 % 106 0.0 15 0.0 15.7 1244 1.9 0.0 4.7 113.3
60 % 18000 4.3 216 0.0 17.0 4805 26 0.0 13.0 239.0
80 % 18000 5.5 4993 0.0 27.7 9362 749 0.0 58.3 453.7

100 % 18000 6.8 8147 0.0 30.0 10416 989 0.0 67.3 498.7

Table 1 – Comparison of MIP, LBBD, and LBBD-AGG approaches across instances.

The results confirm that instances with more trains are generally harder to solve. Among
the methods, direct models fail to scale to instances of medium size, whereas decomposition-
based methods can solve the largest instances. The proposed LBBD-AGG is consistently faster
than LBBD, thanks to the effectiveness of the novel cuts. To assess the practical benefits of a
microscopic approach, we also solved a macroscopic equivalent in the entire network, yielding a
1.5% increase in objective value. This translates to an additional 4.45 h over 10 h of operations,
which can be saved using a microscopic model. Overall, our results demonstrate that the proposed
LBBD-AGG approach is computationally efficient for large-scale, complex timetabling instances
and highlights the potential advantages of adopting a microscopic model for periodic timetabling.
In further research, we want to focus on tackling even more extensive networks and integrating
practically relevant aspects, such as passenger routing, flexible transfers or vehicle circulation.
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