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1 INTRODUCTION

The massive adoption of shared electric vehicles (SEVs) necessitates the availability of publically acces-
sible fast chargers, compensating for SEVs’ onboard battery capacity limitations and supporting SEVs’
opportunistic charging needs. Using these fast chargers, SEVs can quickly restore their SoC levels, en-
suring minimal interruption to their working schedules (Cilio & Babacan, 2021). Planning fast charging
stations over multiple years in response to evolving charging demand patterns and induced demand due
to the improved charging service is challenging (Hu et al., 2024, Moniot et al., 2022). Existing mod-
els predominantly used deterministic optimisation methods to address this problem, excluding temporal
dimension in the decision-making (Ye et al., 2024, Lokhandwala & Cai, 2020). The inherent uncertain-
ties in ride-hailing demand were oversimplified by prior studies. Meanwhile, a large number of existing
studies did not include fleet size as a decision variable in their models or modelled it deterministically.

The approach proposed in this paper improves on the state-of-the-art methods used to develop charg-
ing station deployment plans over time. Using real-world Singapore taxi data, the model achieved a
61.47% reduction in fast chargers (21,347 fewer chargers), a 496% increase in charging time per charger,
and a 20.52% reduction in waiting time per request. Principal contributions include: First, this is the first
multi-phase framework for long-term fast charging station planning. We formulated a stochastic sequen-
tial decision problem and employed the reinforcement learning method to solve it. In specific, the deep
deterministic policy gradient (DDPG) algorithm, representing a model-free, policy gradient-based, and
off-policy RL method, was applied. Second, the model incorporates fleet size decisions which evolve
over time. Third, an agent-based model was incorporated to simulate complex SEV fleet operations in-
volving vehicle assignment, charging dispatch, queuing for changing at the stations, and repositioning.
The uncertainties considered in our model include (i) the ride-hailing demands and the induced demand,
(ii) the SEV service capability for the new phase, and (iii) SEVs’ charging demands in space and time.

2 METHODOLOGY

In an agent-based transport model with discrete time steps, each second is denoted as t ∈ Tp, where p
represents decision phases (years) p ∈ P in a planning horizon P. The candidate charging stations are
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f ∈ F. Let Dp represent all ride-hailing requests d in time step Tp of phase p. A transport network
company (TNC) operates SEVs v ∈ Vp to serve these requests. SEVs are assigned to charging stations
when stationed or when their SoC drops below a threshold (BL). The planning authority decides the
number of chargers addp

f to install at each station, with ap
f as the rate of remaining capacity at station f

allocated for new chargers in phase p, where addp
f = ⌊ap

f · (capp
f −nump

f )⌋.
The objective function 1 maximises the total reward rp

f at phase p, comprising two immediate re-
wards. The first immediate reward is the effective charging service time ratio rvp

f . As expressed in
Equation 2, it captures the time a SEV spends on charging (chrt,p

v, f ) compared to the time spent on the
entire charging process (quet,p

v, f + chrt,p
v, f ) involving queueing, where chrt,p

v, f ∈ N{0,1} and quet,p
v, f ∈ N{0,1}.

The second immediate reward maximises the capacity utilisation efficiency ratio r f p
f defined in Equation

3 as the future available space (capp
f -nump

f ) for fast charger deployment at each station, divided by the
station’s total capacity (capp

f ). Variable nump
f indicates the cumulatively deployed chargers. Equations 4

and 5 represent the ride-hailing demand growth using a sigmoid growth curve, and the induced demand
∆|Dp|, which is a function of the charging service level of the preceding phase. TNC constantly cali-
brate the fleet size |Vp| based on the demand and ride-hailing completion rate g-g

′
pair-wise, following

Equation 6. Constraint 7 defines a piecewise probability for opportunistic charging of SEVs.
Figure 1 illustrates the proposed RL-integrated planning framework: Action (ap

f ) represents allocated
for new chargers. State (sp

f ) captures the total pick-up and drop-off events and the charging behaviours.
Reward (rp

f ) follows the objective function. The RL model was trained over 200 epochs.

max
ap

f ∼µ

rp
f = E

f∼F

[
|P|−p−1

∑
k=0

γ
k
(

rvp+k
f + r f p+k

f

)]
∀p ∈ P, f ∈ F,k ∈ N[0,|P|] (1)

rvp
f = ∑

t∈T p
∑

v∈V t,p
f

chrt,p
v, f

quet,p
v, f + chrt,p

v, f
(2)

r f p
f =

capp
f −nump

f

capp
f

(3)

|Dp|= |Dp=|P||
1+ e−α p +∆|Dp| ∀p ∈ P (4)

∆|Dp|= ∑
g∈I

rnd(1,2)rvp−1
f=g′

dp−1
g,g′

∀p−1 ∈ P,g,g
′ ∈ F (5)

|Vp|= β

Dp−1, ∑
g,g′∈I

comp
g,g′

comp
g,g′

+drpp
g,g′

 (6)

prbt
v =

{
1, i f soct

v ≤ BL

1− soct
v−BL

BP−BL , otherwise
(7)

3 RESULTS

Figure 2(A) shows the relationship between the phase-based ride-hailing demand, SEV fleet size, and the
average action decisions (āp

f ) on the deployment of the fast chargers. Initially, deployment decisions are
cautious, clustered around 0.012. Over time, they expand, reaching 0.099 to 0.252 by year five, reflecting
a more assertive strategy to meet rising demand. This trend, also seen in Figure 2(B), indicates the
model’s ability to balance immediate needs with long-term growth, prioritising sustained development
over rapid short-term deployment.

As charging demand grows yearly, the supply of fast chargers scales accordingly. Figure 3(A) com-
pares natural demand growth (black line) with growth that includes induced demand (other lines), illus-
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Figure 1 – A reinforcement learning-integrated multi-phase fast-charging station planning framework

Figure 2 – Fast charger deployment decisions per station: (A) Patterns under all ride-hailing demand
and SEV fleet sizes. (B) Patterns of featured training epochs

trating how the model captures the feedback loop between infrastructure and demand. Figure 3(B) shows
that by Epoch 200, only about 60 chargers are needed in the fifth year—61.47% of the initial 98 chargers
in Epoch 0—to meet similar demand levels. This reflects the model’s efficiency in meeting demand with
fewer resources. By reducing the number of chargers per station, the model increased charging service
time per charger, rising from 353 seconds in Epoch 0 to 1,332 seconds in Epoch 200 (Figure 3(C)), in-
dicating more intensive charger use in later epochs. Figure 3(D) shows improved queue management,
reflecting a more effective allocation of fast chargers to meet demand.

Figure 4(A) shows a steady increase in total reward convergence, indicating effective optimisation
of fast charger deployment. The sub-rewards convergence patterns in Figure 4(B) reveal improved effi-
ciency, with fewer chargers deployed while maintaining a stable service time ratio. This trade-off reflects
a strategy prioritising long-term scalability and flexibility, balancing efficient capacity use with opera-
tional stability.

4 DISCUSSION

This study formulated a stochastic sequential decision-making framework and employed a reinforcement
learning (RL) method-integrated planning framework to approximate the optimal sequence of configura-
tions for the locations and numbers of new fast chargers. The proposed RL framework offers a dynamic,
data-driven approach to SEV charging station planning. It adapts more effectively to evolving demand
and operational uncertainties than classical integer programming and robust optimisation, which rely on
predefined scenarios or deployment strategies. Our scalability analysis demonstrates that the compu-
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Figure 3 – Charging station performances: (A) Charging requests per station (B) Number of chargers
per station. (C) Total charging time per charger. (D) Queueing time per charging request.

Figure 4 – Total rewards attained per training epoch

tational cost of the model increases with higher spatial resolution, but remains feasible for large urban
applications. Simulating one epoch with a 5000m grid resolution (9 grids) using 100% of a day’s Sin-
gapore taxi trip data takes 428s, while finer resolutions require 1135s for 2000m (1135 grids), 1922s for
500m (935 grids), 3362s for 200m (3362 grids), and 5717s for 100m (23,259 grids).
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