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1 INTRODUCTION

The rise of digitalization capabilities, the need to address new and changing commuting patterns,
and the higher customer expectations underscore the need for new, more efficient and accessible
transit systems. One of the emerging transport systems that aim to combine the benefits of con-
ventional public transport (i.e., transit) and on-demand mobility is the On-Demand Multimodal
Transit System (ODMTS). An ODMTS is a mixed-transport system where on-demand services
complement the existing transit system and all are optimized in a synchronized and integrated
manner. ODMTSs have been actively studied in recent years (Steiner & Irnich, 2020, Calabro
et al., 2023) and pilot projects have proven their viability in practice (Van Hentenryck et al.,
2023), but modeling and planning these systems at scale remains a challenge. Most of the studies
consider different assumptions such as deterministic passenger demands or homogeneous fleets
(Banerjee et al., 2021, Sumalee et al., 2011) which can lead to under- and over-utilization of the
system capacity and hinder the offered service level to passengers. Adjusting the frequency of
the transit lines is one way of adapting the system capacity to the demand. However, this may
not be enough, and it is also susceptible to unexpected variations in demand. We believe that
including stochastic demand and heterogeneous fleet in the planning of an ODMTS can lead
to system-optimum solutions by allocating the system capacity more efficiently, and provide a
better level of service while maintaining or even reducing operational costs.

We present a novel two-stage problem formulation for the ODMTS in which we make strate-
gic decisions in the first stage (i.e., system fleet sizing and transit scheduling) and operational
decisions in the second stage (i.e., planning of on-demand vehicles and passenger routing) to
respond to demand uncertainty. We propose an exact algorithm that leverages both Benders
decomposition and column generation to solve large-scale instances. Results from a case study
in the city of Zurich show that our method can solve instances with 10 lines and hundreds of
requests outperforming commercial solvers. Comparison with unimodal, fleet-homogeneous and
deterministic benchmarks, underscore the practical benefits of considering demand stochasticity
and fleet heterogeneity. In overall, efficiently planning the system capacity of on-demand multi-
modal transit systems can provide win-win outcomes toward efficient, equitable and sustainable
mobility.
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2 TWO-STAGE STOCHASTIC OPTIMIZATION MODEL

We present a two-stage stochastic problem formulation that plans the transit schedule and its
required fleet in the first stage, and defines the operations of on-demand vehicles and passenger
routes in the second stage.

min Transit fleet and schedule costs + expected operational and travel costs (1)
s.t. Passenger mode assignment constraints (2)
Mode service operating constraints (3)
Vehicle capacity constraints (4)
Passenger flow constraints (5)

2.1 First stage

The first stage problem covers strategical decisions including, (i) which schedule and (ii) with
which fleet should we operate the transit system, and (iii) which transit lines and on-demand
services serve each origin-destination.

The set of public transport lines (e.g., bus or tram) are formed by a set of stations and
operate in both directions. Each line can operate different schedules at different frequencies,
and with different vehicles (differing in capacity). We divide the passenger demand in different
origin-destination pairs and aggregate the demand flow during the operating time period.

Based on this setup, this first stage minimizes, on one hand, the operational costs of operating
the transit schedule, which depend primarily on the frequency (i.e., number of vehicles needed)
and vehicle type used, and on the other hand, the a-priori costs of assigning the aggregated
origin-destination flow to be served by a specific line, on-demand service, or both. We model all
these decisions using binary variables and linear constraints ensuring that each line operates one
schedule, and that its capacity can cover the assigned demand.

2.2 Second stage

The second stage tackles the operations of on-demand services and the routing of the demand
at the passenger level given the transit schedule defined in the first stage. This stage is divided
into different scenarios, each corresponding to a different realization of the passenger demand.
Each passenger request in this stage is characterized by an origin, destination, and request time.
To capture each passenger’s door-to-door trip, we use a time-expanded network where each node
represents a time instant, spatial location, and mode of transport. We define multiple sets of arcs
defining, walking and waiting time, (off)-boarding of vehicles, and running and dwelling times
of the transport modes. A simplified example of such network is shown in Figure 1.
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Figure 1 — Ezample of a passenger graph where transit legs are shown in red, first and last-mile
services in blue, and direct trips in green.
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The model has one set of binary variables depicting the arcs used by each passenger trip. The
second stage minimizes the generalized cost of travel for the passengers (Desaulniers & Hickman,
2007) and the operational costs of the on-demand services. We operate on-demand vehicles as a
first- and last-mile service or a fully door-to-door trip, and ensure capacity at the vehicle level
for all system vehicles. Finally, we link the first and second stage with activating constraints
that link the different transit schedules and demand mode choices to the corresponding arc sets
in the time-space graph.

3 A DOUBLE DECOMPOSITION ALGORITHM

To solve large-scale instances of the problem, we exploit the decomposability of the model, and
in particular, of the second-stage graph. First, we can apply Benders decomposition to the entire
two-stage problem. The first-stage problem becomes the Benders Master Problem (BMP) and the
second-stage problem becomes the Benders Sub-problem (BSP). Leveraging this decomposition,
we can reformulate the second-stage problem as a set partitioning formulation where variables
refer to paths instead of arcs in the time-space graph. Each path corresponds to a passenger trip
from origin to destination.

Given the complexity of the second stage, enumerating all path-based variables is not tractable.
Therefore, we opt to generate them dynamically using column generation. Due to the second-
stage reformulation, we only convexify the flow-conservation constraints for passenger trips,
meaning that the pricing problem (PP) is a shortest path problem in a directed and acyclic graph
(DAG). Therefore, we can use efficient label-setting algorithms to solve them. We acknowledge
that, when the PP is a pure shortest path problem, column generation does not provide a benefit
in terms of root node relaxation (i.e., solving the root node with column generation and solving
the relaxed version of the original formulation provides equal bounds), but we foresee to solve
the root node significantly faster.

Once the column generation and Benders decomposition procedures converge, if the solution
is still fractional, we solve the integer version of the BSP to guarantee an integer feasible solution.
The BSP formulation is tight in itself, and therefore, we expect the integrality gap to also be
near or fully optimal.

Finally, the model’s solution indicates the number of first- and last-mile services to be op-
erated. Based on the vehicle shareability network (VSN) from Santi et al. (2014), we employ
a post-process to determine services that can be served simultaneously using the same vehicle,
and we further combine them into vehicle itineraries to compute a valid and efficient final fleet
of on-demand vehicles.

4 COMPUTATIONAL RESULTS

To assess the value of the model and method, we define a case study based on Zurich’s tram and
bus network. The instances comprise 3-10 lines, and 5-20 demand scenarios with hundreds of
hourly requests.

We compare our double-decomposition algorithm with the direct model solved by Gurobi
to assess the computational performance. While Gurobi can only find solutions to the smallest
instances (i.e., 3 lines and 5 scenarios) within an 10 hour time limit, our double-decomposition
method, achieves high-quality solutions for the largest instances (i.e., 10 lines and 20 scenarios)
underscoring the value of the dynamic row and column generation processes.

Table 1 summarizes the modelling and practical benefits of our problem measured in different
values, and we break down each value for each stakeholder (i.e., transit and on-demand operators,
and passengers). The value of the stochastic solution (VSS) is measured by comparing our model
to a deterministic equivalent, and we observe that considering more demand scenarios can lead
to up 10% objective improvement and Pareto-optimal solutions to all stakeholders. We compute
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Table 1 — Value of Stochastic Solution (VSS), Value of Multi-modality (VMM), Value of Fleet
Heterogeneity (VFH), and vehicle shareability analysis.

Transit On-demand Passenger
costs (%) costs (%) costs (%)
Average # scenarios gsls VSS breakdown
5 3.9 9.9 -5.0 -4.0
10 7.7 18.6 -9.1 -7.6
20 10.3 -3.8 -11.4 -9.5
Average # lines ng}vl VMM breakdown
3 6.4 38.5 -T.7 -6.8
5 5.7 30.0 -8.5 -6.4
10 5.7 20.6 -7.4 -6.0
| L VFH breakdown
Vs. homogeneous fleet 0.5 -10.4 -0.5 0.0
On-demand vehicle Sareable F/L Shared  Service to fleet  Trip to fleet
sharcability ;nalysis mile services (%) trips (%) reduction (%) reduction (%)
52 39 -54 -42

the value of multi-modality (VMM) by comparing it to a uni-modal approach (i.e., either on-
demand or transit trips) and observe that using a mixed approach can improve solutions up
to 6%, especially for on-demand operators and passengers. We also observe that the VMM is
not affected by the network size, but rather by the additional flexibility that on-demand services
provide for each line. We also compare the model using both a heterogeneous and a homogeneous
transit fleet, and we observe that the value of fleet heterogeneity (VFH) does not have a significant
impact on the overall objective but can significantly reduce transit costs. Finally, we measure
the value of using shareability networks to cluster and optimize the on-demand fleet and observe
that we can significantly reduce the fleet size without sacrificing passenger level of service.

Possible future research directions include scaling the algorithm to cover large-city networks,
and investigating cost allocation mechanisms to incentivize the participation of all stakeholders.

In overall, the results suggest that ODMTS can become a relevant solution in the current
mobility ecosystem and provide benefits to users, operators and society as a whole.
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