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1 INTRODUCTION

Figure 1 – F232 Route

Balancing the efficiency of fixed-route transit systems with the flexi-
bility to meet varying passenger demands is a significant challenge in
public transit operations, particularly in low-density areas. This paper
focuses on the design and optimization of a route deviation bus transit
system, which combines the strengths of both conventional fixed-route
services and demand-responsive services. In this system, buses follow
a fixed route and schedule in general, but can occasionally deviate
within a specified buffer zone to accommodate on-demand requests,
enhancing flexibility without severely impacting the reliability.

Route deviation systems are widely used to address the limita-
tions of conventional fixed-route services. The Utah Transit Authority
(UTA) operates 15 such flex routes, which combine the reliability of
fixed-route services with the flexibility of on-demand transport (see
Figure 1). In these systems, buses follow a set route but can deviate up to 0.75 miles to ac-
commodate on-demand requests. Passengers must schedule these on-demand requests at least
two hours before travel, and only two deviations are allowed per bus roundtrip. Despite these
adjustments, buses maintain their schedules and do not depart from designated checkpoints early.

The 0.75-mile deviation limit is based on ADA guidelines and serves as an arbitrary threshold
balancing accessibility and operational feasibility. To enable a more principled system design,
this paper develops a methodology to maximize buffer width while accounting for factors such
as the utilization of fixed stops and the spatial distribution of on-demand requests for route
deviations. Having underutilized fixed stops that can be skipped creates opportunities for larger
deviations for on-demand requests, while heavily used fixed stops may require smaller buffer
areas for on-demand requests to maintain the schedule. These factors underscore the need to
optimize the buffer zone for maximum efficiency.

The key contributions include an integrated approach—consisting of an analytical probabilis-
tic model and a simulation-based model with approximate Bayesian learning—to determine the
optimal route-specific buffer width that (i) maintains on-time performance at key checkpoints
with high probability and (ii) honors on-demand requests received with adequate notice. These
models are applied to Utah routes, improving service efficiency and buffer size.

2 LITERATURE REVIEW

Analytical models have been key in optimizing semi-flexible transit systems with route deviation
capabilities. Daganzo (1984) introduced models balancing stop spacing and slack time with pas-
senger wait times and operational costs, while Chang & Schonfeld (1991) compared subscription
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bus services to traditional feeders, demonstrating cost-effectiveness in low to moderate-demand
areas. Chien & Schonfeld (1997) focused on optimizing urban grid routes and stops, and Nour-
bakhsh & Ouyang (2012) proposed ‘bus tubes’ to improve coverage in low-demand areas. Errico
et al. (2021) further refined demand-adaptive design under stationary conditions, using a hierar-
chical approach for service quality optimization. Recently, Lee et al. (2021) developed a two-stage
stochastic programming model to incorporate spatial and volume variability, yet most of these
models assume deterministic demand, limiting real-world applicability. Our research introduces
probabilistic modeling to optimize buffer zones, enhancing adaptability under variable demand.

An advantage of simulation models is their ability to easily account for stochastic demand.
Alshalalfah & Shalaby (2012) used discrete-event simulation to assess flexible services in Toronto,
revealing potential cost savings, while Quadrifoglio et al. (2008) optimized scheduling for Mobility
Allowance Shuttle Transit systems with passenger behavior data. Zheng & Li (2019) conducted
simulation experiments on flex-route transit systems, examining system efficiency under varying
degrees of dynamism to balance pre-booked and real-time requests. Although effective at han-
dling uncertainty, these models can be computationally intensive for large systems. We address
this challenge with an approximate Bayesian learning framework that reduces computational
time by dynamically adjusting the number of simulation runs, improving overall efficiency.

While existing studies optimize transit at a network-wide level, our research advances this
by optimizing buffer sizes for each route individually, making routes more passenger-centric
and appealing for independent use. This approach enhances the serviceable area and ensures
schedule adherence for on-demand requests made with adequate notice. By bridging deterministic
analytical models and intensive simulations with probabilistic elements and Bayesian Learning,
our method dynamically optimizes buffers and reduces computational time, providing a scalable
solution for reliable semi-flexible transit services.

3 METHODOLOGY

This study proposes a dual-model approach to estimate the maximum allowable buffer width x
that keeps the overall duration of the tour below an acceptable threshold with high probability
while also honoring requests made on demand within that buffer. First, an analytical model
provides insight under stylized settings. Second, a simulation-based model accommodates real-
world geometry and demand patterns, with approximate Bayesian learning to reduce run times.

3.1 Analytical Model

Figure 2 – Stylized Model

The analytical model is developed in a stylized set-
ting, assuming a straight main route as shown in Fig-
ure 2 with Manhattan distances used to compute devi-
ations. This approach simplifies the problem, making
the derivations more tractable while capturing the key
dynamics of route deviation systems. We define a buffer
width x allowing up to m on-demand deviations per trip.

Let Tm(x) be the total travel time, composed of fixed-route driving time, stochastic dwell
times at fixed stops, and additional detour times for on-demand requests. In buffer zone j, each
request arises with probability qj = x lj λj , where lj is the length between the stops and λj is
on-demand occurrence rate derived from population density and historical demand. The request
incurs a detour of 2

v Yj , where v is the average travelling speed and Yj ∼ Uniform(0, x), plus
a dwell time s, provided the total number of deviations does not exceed m, a predetermined
deviation limit according to policy guidelines.

We optimize the buffer width x while maintaining schedule reliability. The objective is to
maximize x subject to constraints on total travel time and early arrivals:
max
x∈R+

{
x s.t. P

(
Tm(x) ≤ c

)
≥ 1− β, P

(
Tm(x)− E[Tm(x)] ≤ −τ

)
≤ α, x lj λj < 1, j = 1, . . . , n− 1

}
.
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Here, c represents the time headway threshold. The first constraint ensures that the total
bus tour duration Tm(x) remains within c with at least probability 1 − β, thereby maintaining
schedule reliability. The second constraint ensures that a request made τ minutes in advance of
the expected arrival at a preceding stop is honored with high probability at least 1−α. Finally,
the last constraint guarantees feasibility by ensuring that the probability qj remains within a
valid range.

To analyze the probabilistic constraints, we examine the asymptotic behavior of Tm(x). Un-
der the assumption that individual deviations are independent and contribute bounded random
delays, the Lindeberg central limit theorem (CLT) applies. As n increases, the variance of Tm(x)
grows without any single term dominating, satisfying Lindeberg’s condition. This ensures that
Tm(x) converges to a normal distribution for large n, allowing us to approximate constraints
using normal probability bounds.

For small n, where the normal approximation may not be accurate, we use a one-sided
Chebyshev inequality to provide a bound on the probability of early arrivals. Specifically, the
likelihood that Tm(x) falls below its expected value by at least τ is limited by the ratio of its
variance to the sum of its variance and τ2. This approach ensures probabilistic control over early
arrivals, even when the distribution of Tm(x) deviates from normality.

The resulting optimization problem yields a computationally tractable algorithmic solution
to determine the optimal buffer width x that satisfies all constraints.

3.2 Simulation-Based Model

Our simulation-based model complements the analytical framework by mirroring real-world oper-
ating conditions and handling route geometries and travel patterns. Rather than imposing strong
assumptions about travel times or spatial layouts, this approach takes advantage of real-world
data to generate a more nuanced picture of daily operations. In each simulation run, the bus
follows its scheduled route, whereas on-demand requests appear randomly in space according to
demand densities estimated using population density and historical data. If a request lies within
the current buffer width x and the bus has not reached its deviation limit, it is served; otherwise,
the request is rejected.

To keep the process computationally manageable, we allow early termination when the tour
is clearly infeasible due to exceeding tour durations or other reasons, avoiding unnecessary simu-
lations. Simultaneously, we used approximate Bayesian learning to update uncertain parameters,
such as travel speeds and dwell-time distributions, after each run, improving the fidelity of sub-
sequent simulations. By pairing these simulations with a binary search over x, we iteratively
identify the largest buffer width that ensures on-time completion with high probability. This
data-driven approach balances accommodating more requests with maintaining schedule relia-
bility while considering practical constraints like the maximum number of deviations per trip.

4 RESULTS

This study applies the methodology to optimize the Utah Transit Authority’s (UTA) 15-route
semi-flexible bus network, where buses can deviate up to 0.75 miles from the main route for
on-demand requests. However, this flexibility can affect schedule reliability for downstream
passengers. By optimizing the buffer width, this study aims to expand service coverage while
maintaining reliable scheduling.

The optimized buffer zones demonstrate significant improvements in operational efficiency
and service flexibility. The models dynamically adjust buffer widths based on demand, balanc-
ing service area coverage with schedule reliability. For instance, in high-demand routes, narrower
buffer zones reduce delays from deviations, helping maintain punctuality. Conversely, in lower-
demand routes, wider buffer zones are feasible, allowing buses to serve additional passengers with-
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out compromising the schedule. This adaptive approach enhances coverage and accessibility, par-
ticularly in areas under-served by traditional transit.

https://youtu.be/RjFoWKsH8Oo.

For instance, on the F11 flex route, we get optimized buffer width
of 0.35 miles, significantly less than the original 0.75 miles allowance,
but all stops maintain 100% on-time performance. This reduction
highlights the trade-off between flexibility and reliability.

At University Hospital (06:34 AM scheduled time), the optimized
time window ensures arrivals between 06:31 AM and 06:37 AM. Simi-
larly, 9th Ave / LDS Hospital (WB) at 06:46 AM has a buffered arrival
window of 06:36 AM to 06:47 AM, demonstrating that the model prevents deviation-induced de-
lays while maximizing coverage.

To illustrate the effect of optimized buffer zones, we provide a video simulation of the F11
route showing bus deviations in response to on-demand requests. The video demonstrates how
the bus deviates within the allowed buffer to accommodate passenger requests while following
the primary route. It highlights the extent and location of deviations along the route.

5 CONCLUSION

This study presents a framework for optimizing route deviation systems by integrating ana-
lytical modeling with adaptive simulation techniques. The approach provides practical tools
for transit agencies to enhance flexibility while maintaining schedule reliability, making it espe-
cially valuable in low-demand areas. The analytical model allows quick assessments, highlighting
how parameters like demand density and headway affect service coverage, while the Bayesian
simulation-based method enables precise optimization under diverse real-world scenarios.

Applied to UTA’s flex routes, the framework demonstrates significant improvements in main-
taining schedule adherence and expanding service reach. By dynamically adjusting buffer zones,
the model balances accessibility in low-demand areas with consistent on-time performance. Wider
buffer zones effectively expand service coverage without compromising punctuality, while high-
demand routes benefit from tighter buffers to avoid delays. The results underscore the model’s
scalability and effectiveness in offering transit systems a balance of flexibility and reliability,
enhancing both passenger accessibility and operational efficiency across varied transit systems.
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