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1 INTRODUCTION

In the rapidly evolving ride-hailing industry, pricing strategy is crucial in shaping market dynam-
ics and consumer behavior. Effective pricing influences platform profitability, user perception,
and demand elasticity. Dynamic pricing, which adjusts fares in real-time based on demand fluc-
tuations, time of day, and external factors, is increasingly adopted. By leveraging advanced
algorithms and big data analytics, ride-hailing platforms can predict demand patterns and opti-
mize pricing. This adaptability maximizes revenue during peak periods and enhances customer
experience with competitive off-peak fares.

Despite the advantages of dynamic pricing, designing an optimal online pricing algorithm
for ride-hailing platforms is a significant challenge (Tang et al., 2020). The market’s complexity
requires balancing multiple objectives, including revenue maximization, customer satisfaction,
and driver availability. Accurately predicting demand is a major obstacle, as it involves historical
ride patterns, real-time traffic conditions, and external factors like emergencies. Even minor
inaccuracies can lead to lost revenue or customer dissatisfaction. Additionally, the algorithm
must quickly adjust prices in response to sudden market changes, such as demand surges from
special events or unexpected drops in driver supply.

Privacy risks present another critical challenge (Lei et al., 2023). Competing platforms may
impersonate passengers to infer the pricing strategies of ride-hailing services, potentially engag-
ing in predatory pricing that leads to economic losses. Additionally, the leakage of passenger
information can have even more severe consequences; third-party agents can deduce sensitive
personal information by observing price fluctuations. For example, if a price increase occurs af-
ter a passenger completes a ride while driver supply is adequate, the agent may conclude that the
passenger exhibits low price sensitivity. Such insights can be exploited for targeted advertising,
discriminatory pricing, or even illicit activities, resulting in financial and privacy-related harm
for the passenger.

To address these challenges, we extend the framework of Chen et al. (2019) by approxi-
mating personalized dynamic ride-hailing pricing as a full-information online learning problem.
The binary feedback (accept/reject service) leads to non-convex loss functions. We propose an
alternative formulation and connect it to contextual dynamic pricing. We then introduce tech-
niques from differential privacy (DP) online learning and the tree-based aggregation protocol
(TBAP) (Chan et al., 2011) to solve this problem while ensuring user privacy. Theoretically,
we demonstrate that the proposed algorithm satisfies ϵ-DP and achieves an expected regret of
Õ(

√
dT
ϵ ).
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2 Problem Statement

Consider the pricing problem faced by a ride-hailing platform that matches drivers with passen-
gers based on varying orders and collects a commission for its services. During each time step
t = 1, 2, . . . , T , a passenger arrives with the intention of traveling to a designated destination.
We model the arrival of passengers as a stochastic process drawn from an unknown distribution,
where the sequence of contexts may be adversarial in nature. Each request is characterized by
a feature vector xt ∈ Rd. which may include publicly observable attributes (e.g., distance and
time) as well as information known only to the current passenger and the platform (e.g., the
passenger’s wait time). The passenger’s valuation of the ride-hailing service depends on both
service features and their private preferences. Assuming that the value a passenger assigns to
the service is a linear function of the service features x and their individual preferences θ, we
can express the valuation function as follows:

ft(xt) = ⟨θ,xt⟩+ st (1)

In this scenario, θ signifies a characteristic that is relevant to all passengers but remains unknown
to the platform. Additionally, st is characterized as a scalar random variable, known as preference
shocks, which correspond to the individual passenger at time t. These preference shocks are
presumed to be independently and identically distributed (i.i.d.) with an average value of zero
across R. We denote the cumulative distribution function as H and the probability density
function as h(z) = H ′(z). At each time period t, the platform sets a price pt for the passenger. If
pt ≤ ft(xt), the passenger accepts the service, generating revenue pt for the platform. Conversely,
if pt ≥ ft(xt), the passenger declines the service, resulting in no revenue. The platform’s objective
is to develop a pricing strategy that maximizes revenue. Crucially, the platform is equipped
with previous feedback (service accepted or not accepted) at each stage and can leverage this
information to adaptively modify the current price.

The objective of this study is to propose a dynamic personalized pricing strategy that not only
maximizes the expected revenue of the ride-hailing platform but also ensures that the platform’s
pricing strategy and each passenger’s valuation information remain confidential. To achieve this,
we introduce the concept of DP to ensure privacy protection while providing a definition of regret
for the platform to measure its revenue.

Definition 1. (ϵ-differential privacy (Dwork et al., 2006)). A pricing policy B of the ride-hailing
platform outputs a sequence of prices P = {p2, ..., pT } ∈ RT−1 based on a sequence of passengers’
preference shocks S = {s1, ..., sT } and an random sequence of service features X = {x1, ...,xT }.
If for any two neighboring databases (X,S)a and (X,S)b that differ in at most one entry in S,
and for all P ⊆ RT−1, a randomized pricing policy B holds:

Pr(B((X,S)a)) ∈ P) ≤ eϵPr(B((X,S)b)) ∈ P) (2)

then this pricing policy B is ϵ-DP.

Platforms’ Regret.The platform’s utility is evaluated through the concept of regret, which
quantifies the maximum expected revenue loss relative to an optimal strategy that can retrospec-
tively identify the hidden model parameter θ. It is important to highlight that the anticipated
revenue generated from a posted price ( p ) can be expressed as:p·Pr(p ≤ ft) = p·(1−H(p−θ·xt))

By applying the first-order condition, we can derive the optimal price p∗(xt):

p∗(xt) =
1−H(p∗(xt)− ⟨xt,θ⟩)

h(p∗(xt)− ⟨xt,θ⟩)
(3)

Define the virtual valuation function of the passenger Ω(f) = f − 1−H(f)
h(f) and define the

optimal pricing function Λ(f) = f + Ω−1(−f). Then Ω is injective and Λ is well-defined and
non-negative .
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We can define the optimal price and maximum regret of A as follows:

p∗t = Λ(⟨xt,θ⟩) (4)

RegretA(T ) = sup
X,θ

T∑
t=1

(p∗t I(ft ≥ pt)− ptI(ft ≥ pt)) (5)

3 Our algorithm

As we deifne the regret in Eq.(5), The loss function lt is defined as the negative of the revenue
generated during time step t, expressed as lt = I(pt ≤ ot)pt. Since this is a non-convex function
and by obtaining an accurate estimate of the hidden parameter θ, we can calculate the optimal
price using Equation (3). Therefore, we can reformulate the problem as an alternative online
convex optimization problem using the negative log-likelihood function in Equation (6).

lt(θ) = −log(1−H(p− θ · xt))I{ct = 1} − log(H(p− θ · xt))I{ct = 0} (6)

where ct ∈ {0, 1} means whether the passenger accepts the service after receiving the price pt
offered by the platform at time t.

We present the steps to solve Eq.(6) in Algorithm 1, followed by a detailed explanation.

Algorithm 1 Privacy-Preserving Contextual Personalized Pricing
1: Inputs:
2: 1. Trip features {xt}t≥1 2. Set Θ, pricing function Λ(·) 3. privacy budget ϵ, Lipschitz

parameter uF , strong convexity parameter K
3: Algorithm Steps:
4: 4. Set an arbitrary θ̂1 ∈ Θ and price p1 = 0
5: 5. τ̂ 1 ← TBAP (uF , ϵ,∇lK1 (θ̂1))
6: for t = 1, ... do
7: 6. θ̂t+1 ← argminθ∈Θ⟨τ̂t,θ⟩+ K

2

∑t
ω=1 ||θ − θ̂ω||2

8: 7. pt+1 ← Λ(⟨xt+1, θ̂t+1), observe yt+1

9: 8. τt+1 ← TBAP (uF , ϵ,∇lKt+1(θ̂t+1))
10: end for

We start to guarantee strong of Eq.(6) by imposing regularization. The K-regularized func-
tion is defined in Eq.(7).

lKt (θ) = lt(θ) +
K

2
||θ||2 (7)

where K represents a parameter that we will modify to optimize the algotithm performance.
We can ensure K-strongly convexity of each lKt .

The pivotal step involves utilizing the quadratic approximations l̃K1 , ..., l̃KT of the loss functions
lK1 , ..., lKT . To calculate the price pt according to Eq.(3), this algorithm will provide an estimate
θ̂ of the parameter θ at each time step t. Since lKt is strongly convex, the lower bound of lKt can
be calculated by Eq.(8). Clearly, the value and gradient of lKt and l̃Kt are the same at θ̂t (that
is lt(θ̂t) = l̃t(θ̂t) and ∇lt(θ̂t) = ∇l̃t(θ̂t)).

l̃Kt = lKt (θ̂t) + ⟨∇lKt (θ̂t),θ − θ̂t⟩+
K

2
||θ − θ̂t||2 (8)

Let θ̃t+1 = argmin
θ∈Θ

∑t
ω=1 l̃

K
ω (θ) represent the “leader” associated with the cost functions

l̃K1 , ..., l̃Kt . The minimization of the sum of l̃t(θ) is equivalent to minimizing the sum of l̃Kt (θ)−
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lKt (θ̂t), as altering a constant term does not affect the minimizer. Therefore, we can express θ̃t+1

in Eq.(9).

θ̃t+1 = argmin
θ∈Θ

⟨
t∑

ω=1

∇lKω (θ̂ω),θ⟩+
K

2

t∑
ω=1

||θ − θ̂ω||2 (9)

As long as the estimate θ̂t solely determined by the cumulative gradients τt =
∑t

ω=1∇lKω (θ̂ω)
satisfies DP, the algorithm output pt, which pertains to passenger preference shocks st, maintains
DP. We utilize TBAP to accurately compute the differentially private version τ̂t of the cumulative
gradient information τt. Substituting τ̂t into Eq.(9) yields Eq.(10).

θ̂t+1 = argmin
θ∈Θ

⟨
t∑

ω=1

τ̂ t,θ⟩+
K

2

t∑
ω=1

||θ − θ̂ω||2 (10)

Simply by substituting the result of Eq.(10), the current parameter estimate θ̂t+1, into Eq.(3),
the platform can compute the price pt+1 that the platform should provide to the passengers at
time t+ 1.

Theorem 1. Privacy Guarantee. Algorithm 1 is ϵ-DP for any trip features and passenger
preference shock sequences (x1, s1), ..., (xT , sT ).

Theorem 2. Given the valuation function described in Equation (1), Algorithm 1 attains regret
on the scale of Õ(

√
dT/ϵ).

4 Conclusion

This study proposes a novel differentially private contextual dynamic pricing method to address
privacy concerns in the dynamic pricing landscape of ride-hailing platforms. By integrating
DP—a gold standard in privacy preservation—with online convex optimization, the approach
effectively introduces noise injection to protect passengers’ sensitive information. We consider
a scenario where passengers receive prices from the platform and decide whether to accept the
service, assuming a linear valuation function. We transform this non-convex setting into an
online convex problem, then leverage the concept of DP and TBAP algorithms to propose our
method, balancing privacy protection and data utility through noise injection in the cumulative
gradients. The proposed approach meets the stringent requirements of differential privacy, en-
suring robust protection of passenger information while establishing an upper limit on regret.
The expected regret is approximately (Õ(

√
dT
ϵ )), indicating that as the potential passenger pool

(T ) increases, the algorithm achieves optimal performance for individual passengers and nearly
cost-free reinforcement of their privacy.
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