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1 INTRODUCTION

The food-delivery business is low-margin and logistically challenging. For example, a recent Wall
Steet Journal article reports that, after accounting for all expenses, DoorDash is left with just
2.5% of the customers’ total bill (Wall Street Journal, 2021). With payment to drivers being the
biggest expense for food-delivery platforms, improving drivers’ efficiency in every possible way
– by choosing the correct number of drivers, by cleverly batching spatially-distributed orders,
and by optimizing delivery routes to shave-off delivery time – is critical for survival in this scale-
driven business. Our goal in this paper is to characterize the fundamental trade-offs in this
stochastic, dynamic optimization problem faced by a platform and offer an algorithm that is not
only near-optimal but also asymptotically tight; i.e., whose long-run average cost per unit time
matches a lower bound.

2 Problem Statement

We consider a continuous-time, infinite-horizon, stochastic, dynamic food-delivery system on the
Euclidean plane. Located at the origin z0 := (0, 0) is a hub of restaurants (or a cloud-kitchen)
that serves customers living within a connected, bounded region R, who place orders from these
restaurants through a delivery-app of a platform. Assume that z0 also lies within R without loss
of generality. The cloud-kitchen operator (i.e., the firm that owns and operates the restaurant
hub) foresees an infinite planning horizon and employs ns ∈ N drivers/servers upfront for the
pick-up and delivery of all potential orders; ns is a one-time decision at the beginning of the
horizon. Drivers are salaried at a constant wage of cs > 0 per driver per unit time.

During the planning horizon, orders from customers arrive at the system according to a Pois-
son process with rate λ > 0, where the arrival time and location of every customer become known
at the time of her arrival. Upon arrival, every order, initially unprepared, begins preparation
instantaneously and spends a deterministic, constant preparation time of tp > 0 at the cloud-
kitchen. This order then becomes “prepared” and waits at the cloud-kitchen before it enters
delivery service, i.e., is loaded/picked up by some driver who sets out for delivery. Customers
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introduce waiting costs to the platform at co > 0 per customer per unit time of waiting, where
the waiting time of a customer counts from her arrival until her departure from the system.

Enroute to delivering orders, each driver drives at a velocity of either 0, i.e., not moving,
or v > 0, on the Euclidean plane with the shortest traveling distance between any two locations
being the Euclidean distance. The delivery service of an order completes once this order is
delivered at its arrival location. Assume that the pick-up operation (resp., the drop-off operation)
of every order at z0 (resp., at its arrival location) is instantaneous. In a single delivery trip, a
driver can carry/deliver multiple orders to exploit spatial economies of scale.Assume that a
driver cannot preemptively return to the cloud-kitchen to pick up newly available orders before
completing the delivery of all orders currently loaded in his vehicle. Each driver has a constant
capacity of q ∈ N , which is the maximum number of orders the driver can carry in a trip.

The objective of the platform is to minimize the expected long-run average cost incurred
per unit time by finding the one-time capacity investment decision on ns and real-time order-
batching and driver-routing decisions for the spatial delivery of orders, where the cost includes
the wages to the drivers and the waiting costs of the orders.

2.1 Information Structure: Anticipation of Order Arrivals

In our setting, the presence of a positive food preparation time tp causes a special information
structure for decision making: at any time t > 0, the platform, as the decision maker, effectively
anticipates the arrival times and locations of prepared orders1 with full certainty for a future
time duration of tp, as these prepared orders correspond precisely to the unprepared orders that
arrive between max(t− tp, 0) and t, whose arrival information is available by t. We see that this
information could be abundant when the demand arrival rate is high and/or the food preparation
time tp is long. Besides, this information is collected “for free", i.e., without incurring extra cost
beyond the cost necessarily incurred while these orders are in the process of preparation. The
special information structure in our model causes significant technical challenges, and requires
the development of novel techniques.

3 Methodology and Results

We analyze exact spatial routing in the stochastic, dynamic food-delivery system with multiple
vehicles. Our direct analysis of the spatial system differs significantly from that in the prevailing
literature on stochastic, dynamic spatial systems, which oftentimes involves a stylized queuing
approximation of the original spatial system that allows for a convenient use of many existing
ideas/results from the queuing literature; see, e.g, Chen et al. (2022) and Besbes et al. (2022).
Our setting, by contrast, poses significantly new technical challenges. To overcome these tech-
nical challenges, we develop novel combinatorial arguments that relate our stochastic, dynamic
problem to several static Euclidean vehicle-routing problems and exploit the non-trivial geomet-
ric and probabilistic properties therein. Our analytical framework, while developed for the study
of stochastic, dynamic spatial delivery systems, can also be helpful for studying other complex
on-demand spatial systems. Our analysis establishes the following three main results, which we
explain in Sections 3.1-3.3 below.

3.1 The Spatial-Temporal Trade-off Inequality

At the core of our entire analysis is an inequality that characterizes the fundamental spatial-
temporal trade-off between balancing the spatial economies of scale and orders’ waiting before
they enter the delivery service: for any given policy, if the long-run average travel distance per
order is L and the long-run average waiting time at the hub, i.e., z0, per order (resp., number of

1A prepared order arrives at the system upon the completion of its preparation.
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orders waiting in the system) is Tw (resp., Nw) under this policy, then the spatial economies of
scale, as measured2 by L, cannot be better than 2r

q + Ω( 1√
λTw+c

), where c > 0 is some constant,

and r is the expected distance of the location of an order from the cloud-kitchen. This inequality
is an interesting result by itself, while it is also essential for the understanding and analysis of
subsequent results/manegerial insights.

To the best of our knowledge, Bertsimas & Van Ryzin (1993a,b) (BV (1993a,b) hereafter)
are the only earlier papers that establish a similar result, where the authors study the dynamic
traveling repairman problem (DTRP) with exact spatial routing and multiple vehicles. Though
related, we note a crucial difference in the information structure between their setting and our
setting: in BV (1993a,b), every order instantaneously becomes “ready" to receive service upon
arrival in the system, i.e., can be assigned to some server (if available) at any moment after
its arrival; by analogy, their setting corresponds to the food preparation time tp = 0 in our
setting. As a result, There is absolutely no anticipation of the arrival time and location of a
future unassigned order at any time prior to the arrival of this future order in BV (1993a,b), as
compared to the anticipation of the arrival information of unassigned orders for a future time
duration of tp > 0 in our setting; see Table 1. The spatial-temporal inequality in BV (1993a,b)

Table 1 – (a) tp denotes the order preparation time, and (b) “anticipation" refers to the antici-
pation of the arrival times and locations of future unprepared orders

system tp information structure Spatial-Temporal trade-off

BV (1993a,b) DTRP = 0 no anticipation L ≥ 2r
q

+ Ω
(

1√
λTw+c

)
Our paper food-delivery > 0 anticipation L ≥ 2r

q
+ Ω

(
1√

λTw+c

)
does not apply to our setting because substantially more information is available at every moment
for decision making, which could potentially bring down the spatial inefficiency as captured by L.
For example, while an unassigned order arrives at the system, the existing unassigned orders at z0

could be precisely those with close proximity to that order’s arrival location, as carefully chosen
by the decision maker who anticipates the arrival of that order tp time units earlier. Surprisingly,
we show that, L ≥ 2r

q + Ω
(

1√
λTw+c

)
remains true irrespective of the degree of anticipation, even

for clairvoyant policies that can perfectly anticipate the arrival times and locations of all the
future orders at time 0.

3.2 A Near-Optimal Policy

We develop a novel anticipating, group scheduling policy (AGS) for the platform’s problem, and
evaluate the performance of AGS based on two measures: (a) The performance gap of AGS,
which measures the extra cost incurred under AGS beyond the platform’s total cost under a
clairvoyant optimal policy that has full information of the arrival times and locations of all
orders during the entire planning horizon; and (b) the excess delay under AGS, which measures
the extra time an order spends in the system beyond the least time that this order has to spend
in the system. We show that AGS simultaneously ensures (a) a vanishing performance gap and
(b) a vanishing excess delay in a meaningful asymptotic regime.

3.3 Safety Staffing Rule

For service systems without the spatial feature, the square-root safety staffing rule (Halfin &
Whitt, 1981), i.e., staffing Θ(λ

1
2 ) drivers above the nominal offered load, is known to balance

servers’ salary costs and customers’ waiting costs. For our spatial food-delivery system, however,

2The smaller the value of this measure, the better the spatial economies of scale.
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our analysis shows that a higher safety level, namely Θ(λ
2
3 ), is needed to balance these two

costs. This finding echoes that of an earlier paper by Besbes et al. (2022), who study capacity
sizing for a spatial ride-hailing platform and establish that a safety level of Θ(λ

2
3 ) balances

capacity utilization and customers’ waiting under the nearest-neighbor dispatching protocol for
drivers. Thus, echoing Besbes et al. (2022), our paper points to a fundamental departure in the
capacity-sizing of spatial service systems from conventional service systems without the spatial
feature. Though related in this respect, we note that our paper differs significantly from Besbes
et al. (2022) in both the setting and the analysis. In particular, Besbes et al. (2022) establish
mathematical results for a state-dependent queuing system that is a stylized approximation of
the original spatial system, and regard these results as qualitative characterizations of the spatial
system. By contrast, we directly study the food-delivery system with exact spatial routing, and
establish all our results for this spatial system. To the best of our knowledge, the present work
is the first to show the optimality of the λ

2
3 -Staffing Rule in an actual spatial service setting.

3.4 Figures

We adopt the modified tour partitioning policy (MTP) designed in BV (1993a,b) to our setting
as the benchmark, and refer to it as the BV benchmark. We numerically test our policy AGS
against the BV benchmark in practically relevant parameter regimes. The results demonstrate
the good performance of AGS in all instances. For example, in Figure 1, when3 q = 2, cs = 1,
and co ∈ {0.3, 1, 3}, the platform’s cost under AGS is lower than that under the BV benchmark
for almost all values of the order arrival rate λ.

Figure 1 – The Performances of Policies in Instances (q, co) = (2, 0.3), (2, 1), and (2, 3). "FC"
denotes a theoretical lower bound on the platform’s cost normalized to one. The platform’s cost
under AGS (resp., the BV benchmark) is normalized by FC as well in the plots.
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