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1 INTRODUCTION

In Inverse Optimization (IO) problems, our goal is to model the behavior of an expert agent,
which given an exogenous signal, returns a response action. It is assumed that to compute
its response, the expert agent solves an optimization problem that depends on the exogenous
signal, and with an unknown cost function. Therefore, given a dataset of examples of signals
and corresponding expert responses, we use IO to learn the cost function used by the expert
agent (Zattoni Scroccaro et al., 2024b). The assumption is that we have access to corresponding
expert responses (aka decisions) or that we can generate those based on available data.

We have earlier developed a tailored IO methodology to efficiently solve static routing prob-
lems by learning the cost of edges on the graph. We applied and showed the promising perfor-
mance of IO on the Amazon Last Mile Routing Research Challenge, proposed by Amazon.com,
Inc. in 2021. The final score of our IO approach is 0.0302, which ranks 2nd compared to the
48 models that qualified for the final round of the Amazon Challenge (Zattoni Scroccaro et al.,
2024a).

In this paper, we extend the methodology to handle dynamic routing problems. The inverse
optimization approach in this case learns a dispatching policy from data given a dynamic vehicle
routing problem with time windows (DVRPTW) where requests appear in the system dynam-
ically. The contribution of our work is the inverse optimization methodology for learning the
dispatching policy instead of a deep learning structure proposed in the literature.

2 PROBLEM STATEMENT

The considered problem in this paper is inspired by the dynamic variant of the EURO Meets
NeurIPS 2022 Vehicle Routing Competition, which concerns a DVRPTW with unlimited fleet
(see Kool et al. (2022)). For this problem, each day is divided into 1-hour epochs. At the start
of each epoch, a certain number of requests are received, where each request corresponds to a
customer with a certain demand and time windows that need to be respected. Each request
can either be dispatched at the end of the current epoch or postponed to the next one. At the
final epoch of the day, all requests must be dispatched. Naive policies such as “greedy” (i.e.,
dispatching all requests as soon as they arrive) or “lazy” (i.e., dispatching requests only when
their time windows make them infeasible for the next epoch) are in most cases sub-optimal, and
coming up with good dispatching policies is a challenging problem due to the uncertainty and
stochasticity of future requests.

We formalize the problem as given in Algorithm 1. The goal is to learn a dispatching policy
that for each epoch t ∈ [T ], dispatches a subset of the currently available customers xt ⊆ At :=
{z1t, . . . , zmtt}, and postpones the rest. At the beginning of each epoch, a set of new customers
wt is added to the set of available customers At. We call {wt}Tt=1 a DVRPTW instance which
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in a sense represents the dynamic aspect of the problem in terms of the arrival of customers
over time. Let c(xt) ∈ R be the cost of the routes to serve the customers in xt. Then, given
a DVRPTW instance, the goal is to minimize the total cost (e.g., total driven distance of the
vehicles) for the whole day).

Algorithm 1 DVRPTW scenario
1: for t = 1, . . . , T do
2: Set of available customers: At

3: Choose xt ⊆ At customers to dispatch
4: New customers: wt+1

5: Update set of available customers: At+1 = (At \ xt) ∪ wt+1

6: end for
7: Total cost:

∑T
t=1 c(xt).

To generate a training dataset of requests and expert routes, we use the best in hindsight
solution to the DVRPTW, that is, the optimal dispatching policy with knowledge of future
requests. In practice, when choosing xt, we do not have the access to wk for k > t. Nonetheless,
given instances of DVRPTWs, i.e., a sequence of {wt}Tt=1, we can use (1) to compute the best
dispatching sequence x1, . . . , xT in hindsight.

DVRPTW({wt}Tt=1) := min
x1,...,xT

T∑
t=1

c(xt)

s.t. xt ⊆ At, ∀t ∈ [T ]

At+1 = (At \ xt) ∪ wt+1, ∀t ∈ [T − 1]

A1 = w1.

(1)

Notice: Although not explicit in (1), the order of the customers in xt matters, since it defines
the vehicle routes, which affect the total cost of the route c(xt).

3 INVERSE OPTIMIZATION APPROACH

The idea behind the IO approach is illustrated in Figure 1. Given a DVRPTW instance {wt}Tt=1,
we compute the best solution in hindsight {x⋆1, . . . , x⋆T } by solving (1). We then use this data
to create the signal-response IO dataset {(At, x

⋆
t )}Tt=1. As a Forward Optimization Problem, we

use a Prize-collecting VRP (PCVRPTW):

FOP(θ,At) := argmin
xt

c(xt) +
∑

zit∈At\xt

pθ(zit)

s.t. xt ⊆ At,

(2)

where pθ(zit) is the prize of the customer with feature vector zit. For instance, we can model it
linearly as pθ(zit) = ⟨θ, zit⟩.
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Figure 1 – Illustration of the IO approach on dynamic VRP

A PCVRPTW is a routing problem where each request is associated with a “prize” and not
all requests need to be served (also used as the underlying formulation by Baty et al. (2024) who
won the competition). The goal is to collect the maximum amount of prizes by dispatching its
respective request, while also minimizing the travel distance. This way, requests with low prizes
are not served, which in a dynamic routing problem are postponed to the next epoch. In this
case, using the optimal dispatches computed by the hindsight expert to learn the cost function of
a PCVRPTW is equivalent to learning a “prizing function” that assigns a score to each request,
and then dispatches the requests with a large prize and postpones the ones with a small prize,
according to the PCVRPTW solution.

The training of the IO approach is handled through a training algorithm given in Algorithm
2 using a linear prize function pθ(zit) = ⟨θ, zit⟩. The algorithm starts with an initial set of
parameters θ1 and the set of computed best solutions in hindsight D = {(At, x

⋆
t )}Tt=1. With the

current θ parameters and for a given example from the sample, the set of dispatched customers is
optimized with the FOP. The “gradient” gk then represents the difference between this solution
and the best solution in hindsight in terms of the features of the selected customers. Based
on this gradient, the parameters are updated and the algorithm continues until a predefined
maximum number of iterations to generate the learned θ parameters. This algorithm is based on
the suboptimality loss and stochastic gradient descent ideas (see Zattoni Scroccaro et al. (2024b)
and Zattoni Scroccaro et al. (2024a)).

Algorithm 2 Stochastic first-order algorithm

1: Input: θ1 ∈ Θ and D = {(At, x
⋆
t )}Tt=1.

2: for k = 1, . . . , N do
3: Sample example: (Ak, x

⋆
k)

4: xk ∈ FOP(θk, Ak)
5: gk =

∑
zik∈Ak\x⋆

k
zik −

∑
zik∈Ak\xk

zik
6: θk+1 = θk − ηkgk
7: end for

TRISTAN XII Symposium Original abstract submittal



4

4 RESULTS

A dataset consisting of real-world historical DVRPTW instances was provided in the context of
the EURO Meets NeurIPS 2022 Vehicle Routing Competition. Different methods were evaluated
by a test dataset which we also use in this study.

Based on the training algorithm (Algorithm 2) we learn the θ parameters that relate the
features of the customers to the prize to be collected upon dispatching them. These learned
parameters, i.e., learned dispatching policy, are then used on the test data to make decisions on
dispatching or delaying the available customers.

The current results we obtained demonstrate intuitive learned parameters of the price function
such that the collected prize of a customer increases if (i) the demand of the customer is larger,
(ii) the time window starts sooner, (iii) its location is further to the depot and (iv) the service
time is longer.

The best score we obtained on the test data is around 354000 which is between the first and
the second score (for the dynamic variant) published as a result of the competition 1. Therefore,
our proposed approach is promising to tackle dynamic vehicle routing problems without relying
on deep learning techniques which necessitate a thorough tuning of the involved parameters.
This is ongoing work and at the conference, we plan to present a comprehensive analysis of the
results including computational efficiency.

There are various possibilities to further improve the performance of the method. Algorithm 2
is a quite standard algorithm in terms of the gradient updates and could be further tested with
more iterations or with different sampling strategies. The price function we have now is linear
in features and can be investigated with further specifications and also possibly with Kernel
approaches relating the price to the already seen set of customers.
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