
Data-driven optimization of pricing and vehicle relocation for
ridesourcing platforms considering reservation

Xiaoshu Dinga, Haoning Xib, Han Fanga, and Sisi Jiana,∗

a Department of Civil and Environmental Engineering, The Hong Kong University of Science and
Technology, Hong Kong

b Newcastle Business School, The University of Newcastle, Sydney, Australia
∗ Corresponding author: cesjian@ust.hk

Extended abstract submitted for presentation at the 12th Triennial Symposium on Transportation
Analysis conference (TRISTAN XII)
June 22-27, 2025, Okinawa, Japan

Keywords: Ridesourcing, Data-driven optimization, Long Short-Term Memory (LSTM),
Hybrid offline-online framework, Deep Reinforcement Learning

1 INTRODUCTION

In response to the growing demand for pre-booked trips, ridesourcing platforms, such as Uber
and Didi Chuxing, have introduced reservation services, aiming to ensure punctual departures for
passengers while reducing idle time for drivers. However, many customers have voiced frustra-
tions over the trip fares, which can be several times higher than real-time orders. Such disparity
raises concerns over fairness and trust in the pricing strategies of these ridesourcing platforms.
Ideally, the pricing of pre-booked orders should reflect the demand-supply dynamics at the ac-
tual departure time, which are, however, not revealed in advance. Traditional dynamic pricing
raises prices when demand exceeds supply to maintain balance. In contrast, pre-booked orders
require guaranteed fulfilment, making it challenging to apply such price adjustments. Instant
price hikes could lead to unexpectedly high costs for travellers or unfulfilled orders, thereby af-
fecting customer satisfaction and retention. Therefore, it is essential to design a transparent
and fair pricing scheme for reservation services. Furthermore, pricing decisions impact vehicle
relocation, which is critical to efficiently meeting travellers’ requests and optimizing mobility
resource utilization. While existing research has explored vehicle dispatching and relocating op-
timization for ridesourcing Yahia et al. (2021) and ride-pooling services Engelhardt et al. (2022)
considering the difference between pre-booked and on-demand customers, few studies focus on
the interaction between pricing schemes for pre-booked and on-demand services and the joint
pricing and relocation strategies for ridesourcing platforms.

To fill this gap, we propose a data-driven framework that combines partial offline optimization
model for pre-booked orders with adaptive online optimization model for real-time orders and
vehicle relocation strategies. We first employ deep learning neural networks (i.e., Long short-
term memory) to predict demand functions based on the historical data. These predictions are
then incorporated into a profit-maximization problem to determine the optimal pricing strategies
for pre-booked orders, which can proactively balance supply and demand. However, since real
demand may still deviate from these predictions due to uncertainties, adaptive vehicle relocation
and dynamic pricing strategies are required for real-time orders. To handle these fluctuations, we
use Deep Reinforcement Learning (DRL)(Huang et al., 2022) to adjust pricing, dispatching, and
relocation decisions based on real-time demand, while maintaining pre-booked commitments.

2 METHODOLOGY

We formulate the offline pricing and vehicle allocation problem for a ridesourcing platform op-
erating in a zonal transport network. Let N = {1, 2, ..., N} represent the set of zones and
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T = {1, 2, ..., T} the time slots. In each time slot t, the platform sets prices for both pre-booked
and real-time orders, denoted by pPB

ij,t and pRT
ij,t , respectively. The demand for these services de-

pends on passengers’ willingness-to-pay, which is modeled using a distribution function f . The
number of passengers willing to pay for trips from zone i to zone j is given by nPB

ij,t (p
PB
ij,t ) and

nRT
ij,t (p

RT
ij,t ), influenced by the potential demand DPB

ij,t and DRT
ij,t . The platform has full knowl-

edge of these demand distributions and adjusts pricing accordingly. While pre-booked orders are
guaranteed, real-time orders may face unmet demand due to vehicle shortages. Therefore, the
platform decides the number of vehicles to allocate for real-time orders, vRT

ij,t , to meet the highest
demand. The number of successfully fulfilled pre-booked and real-time orders, OPB

ij,t and ORT
ij,t ,

are then determined. The offline profit maximization problem is then formulated as follows:

max
p,d,x

∑
i,j

∑
t

(
pRT
ij,tO

RT
ij,t + pPB

ij,tO
PB
ij,t − cijxij,t

)
(1)

s.t. ∑
j∈N ,j ̸=i

(
vRT
ij,t +OPB

ij,t + xij,t
)
⩽ si,t, ∀i ∈ N , t ∈ T (2)

ORT
ij,t = min

{
nRT
ij,t (p

RT
ij,t ), v

RT
ij,t

}
, ∀i, j ∈ N , i ̸= j, t ∈ T (3)

OPB
ij,t = nPB

ij,t (p
PB
ij,t ), ∀i, j ∈ N , i ̸= j, t ∈ T (4)

qi,t+1 = qi,t −
∑

j∈N ,j ̸=i

(
vRT
ij,t +OPB

ij,t + xij,t
)

+
∑

j∈N ,j ̸=i

(
vRT
ji,t−δji

+OPB
ji,t−δji

+ xji,t−1

)
, ∀i ∈ N , t ∈ T (5)

pRT
ij,t , p

PB
ij,t , v

RT
ij,t , xij,t ⩾ 0, ∀i, j ∈ N , i ̸= j, t ∈ T (6)

where cij denotes the cost of relocating a vehicle from zone i to zone j. Constraints (2)
are capacity constraints that ensure the total number of vehicles dispatched to serve demand
or to be relocated does not exceed the available vehicles in each zone during a given time slot.
Constraints (3) set the predicted real-time demand, nRT

ij,t (p
RT
ij,t ), as the upper bound for realized

demand, while Constraints (4) guarantee that all predicted pre-booked orders will be fulfilled.
Constraints (5) are flow conservation constraints that update vehicle availability for the next
time slot t + 1, where δji is the travel time from zone j to zone i. Constraints (6) define the
feasible domain of the decision variables.

After optimizing the reservation prices pPB∗ in the offline phase, passengers decide whether
to pre-book a ride, providing the platform with accurate pre-booked demand dPB. However,
real-time demand remains uncertain, and the platform lacks knowledge of future real-time de-
mand distributions. Thus, real-time pricing and vehicle relocation decisions must be dynamically
adjusted based on demand and supply.

We model the dynamic pricing and vehicle relocation problem as a Markov Decision Process
(MDP) and solve it using Deep Reinforcement Learning (DRL). The MDP is defined as a tuple
(S,A,R,P), where:

• State Space S: Includes pre-booked demand dPB
t , real-time demand DRT

t−1, and vehicle
availability qt. A state at time step t is defined as st = {dPB

t ,DRT
t−1, qt}.

• Action Space A: Consists of pricing pRT
t , vehicle dispatching vRT

t , and relocation deci-
sions xt. A action at time step t is defined as at = {pRT

t ,vRT
t ,xt}.

• State Transition P: The transition probability describes how demand evolves based
on the actions taken, while vehicle availability changes deterministically according to the
relocation and dispatching decisions.
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Figure 1 – An offline-online combined joint pricing and vehicle relocation optimization framework

• Reward Function R: The reward evaluates the platform’s profit based on the real-time
demand fulfilled, considering revenue from both pre-booked and real-time orders, minus
the vehicle relocation costs.

3 RESULTS

We conduct a numerical experiment using the historical order dataset provided by Didi Chuxing
in Haikou, China, from 1/5/2017 to 31/10/2017 (six months). The study area is divided into
approximately 111 hexagonal zones, each with a side length of 1.22 km and an area of 5.16 km²,
as shown in Figure 2. This division results in 2,616 OD pairs, with real-time and pre-booked
orders counted for each pair every 10 minutes. In total, the dataset includes 87,150 real-time
orders and 1,353 pre-booked orders. For the real-time orders, the zones with the top 300 highest
order counts were selected, as shown in Figure 3. This selection focuses on regions with higher
demand, enabling the observation of significant demand fluctuations, which in turn improves the
accuracy of demand forecasting.

Relocation costs are computed based on the Manhattan distance between zones, with a unit
cost of 0.5 CNY per kilometer per vehicle. The initial vehicle supply across zones is randomly
generated to reflect real-world variability. All experiments were executed on a laptop with a 2.0
GHz quad-core Core i5 CPU.

3.1 Comparison of different online optimization

We employ an offline-online optimization framework, where the offline phase predicts the demand
for both pre-booked and real-time orders in order to determine the optimal pre-booked prices
for the online phase. In the offline phase, linear regression models the demand as a function
of price, expressed as pRT

ij,t = α + βdRT
ij,t , with parameters α and β derived from historical data.

This is further enhanced by an LSTM model that captures temporal dependencies, resulting in a
hybrid model that improves demand forecasting accuracy. Based on these demand predictions,
the offline model sets the pre-booked prices and allocates vehicles to meet the forecasted demand,
aiming to maximize profits and minimize unmet orders.

In the online phase, we implement a DRL framework that dynamically adjusts pricing and
vehicle relocation decisions based on real-time observations at each time step t. The DRL
model optimizes the system’s performance by considering the current state, including pre-booked
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Figure 2 – Distribution and regional division
of orders

Figure 3 – Selected zones for numerical ex-
periments

demand, real-time demand from the previous time step, and vehicle availability. This approach
allows the system to adapt to fluctuations in both supply and demand, ensuring operational
efficiency.

Results presented in Table 1 show that our DRL-based approach consistently enhances profits
across various scenarios, outperforming traditional methods. The training set consists of data
from 4/30/2017 to 5/15/2017, while the test set is based on data from 5/16/2017 to 5/21/2017.

Table 1 – Profit Improvement on Different Operating Hours

Relocation-
only($)

Online
pricing($) Improvement(%)

Off-Peak 67268 68723 2.16%
Peak 28275 29159 3.13%

4 DISCUSSION

In this study, we propose a “predict-then-optimize” data-driven framework to optimize pricing
and vehicle relocation for ridesourcing platforms, addressing the challenge of managing both
pre-booked and real-time orders. To manage demand uncertainty, we develop an offline-online
hybrid model where the optimal trip fares for pre-booked orders are determined in the offline
phase, while dynamic vehicle relocation and pricing for real-time orders are determined in the
online phase using a DRL-based approach. Numerical experiments with real data validate the
effectiveness and applicability of the proposed framework.
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