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1 INTRODUCTION

The growing integration of shared micromobility systems, such as e-scooters and bikes, with pub-
lic transport services has opened up new opportunities for optimizing multimodal trip planning
(Oeschger et al., 2020). One of the major concerns faced by passengers is the uncertainty of
vehicle availability at different locations, which can vary significantly due to uncertain demand
influenced by factors such as time of day and location type (e.g., shopping malls, schools, resi-
dential areas), as shown in Figure 1. A multimodal transport platform, like Mobility as a Service
(MaaS), aspires to provide reliable trip suggestions. Therefore, this study proposes a multimodal
trip planning approach to the platform to ensure accessible micromobility service to passengers
and promote multimodal transport.

Figure 1 – Temporal variations in heterogeneous demand distributions across different urban areas

In the existing literature, scholars predominantly focus on stochastic optimization to ensure
reliability (Ding et al., 2024), with limited research addressing the integration of prediction and
stochastic optimization. Unlike approaches that rely solely on stochastic optimization with static
historical data, incorporating prediction allows for the adaptation to changing conditions by cap-
turing trends and external factors (e.g., seasonality and weather), making the optimization more
responsive and effective in dynamic environments, especially when data is limited or variable.
To tackle operational challenges arising from demand and supply uncertainties, we propose a
stochastic optimization framework that first predicts demand, which is then used to estimate
supply uncertainty and optimize trip planning, ensuring passengers can reliably plan trips using
both micromobility and public transport.

TRISTAN XII Symposium Original abstract submittal



2

2 Methodology

The methodology incorporates demand prediction and stochastic optimization for reliable real-
time trip planning under supply uncertainties, as illustrated in Sections 2.1 and 2.2.

2.1 Demand prediction of shared micromobility

In a shared mobility service without active rebalancing, fleet availability is driven by the intensity
of pickup and dropoff requests, which tends to follow periodic patterns based on the functions
of different areas. To enhance prediction accuracy, points-of-interest (POI) data are considered,
capturing the characteristics of locations such as shopping centers, universities, and residential
areas, each of which may exhibit distinct supply behaviors. Additionally, short-term demand
for shared micromobility services is closely influenced by the local weather conditions. We pro-
pose a transformer-based model to predict the probabilistic demand of shared micromobility at
various locations using multivariate contextual inputs. The output is conditional probability
distributions, denoted as P (p̂t,t+1

i |Xt) and P (d̂t,t+1
i |Xt), which represent the pickup and dropoff

demands at location i in the next time interval, given the multivariate input values Xt ∈ Rm.

2.2 Stochastic optimization for multimodal trip planning under supply un-
certainty

Using real-time demand predictions of shared micromobility, our framework then estimates the
supply uncertainty and generates suggested trip for each passenger when the request is received.
These alternatives may include either a single mode (e.g., only shared micromobility) or multi-
modal transport options combining micromobility with public transport. The goal is to ensure
that each recommended trip has a high probability of vehicle availability and reduce the uncer-
tainty faced by passengers.

To achieve this, we employ stochastic optimization techniques, i.e., Chance Constrained ap-
proach, to model and mitigate the supply uncertainty. By incorporating the supply uncertainty
into the optimization process, our approach generates trip recommendations that maximize the
likelihood of vehicle availability for passengers, ensuring a reliable multimodal experience. At
each time step t ∈ T , the objective is to minimize the cost of using multimodal transport:

F =
∑
r∈R

∑
k∈K

∑
(i,j)∈A

ckijx
kr
ij (1)

ckij = αk + βkτkij + γkdkij (2)

where (i, j) ∈ A represents the routes, k ∈ K denotes the vehicles, and ckij specifies the cost of
using vehicle k on route (i, j). Multiple vehicles can be utilized to serve the same request. αk, βk

and γk represent a fixed baseline cost, cost parameter related to actual travel time τkij , and cost
parameter related to distance dkij using vehicle k, respectively. xkrij is a binary decision variable,
equal to 1 if passenger r ∈ R is assigned to vehicle k on route segment (i, j), and 0 otherwise.

Given that the initial supply q̂0i is known, the uncertain fleet availability at location i at time
t, denoted as q̂ti , needs to be restricted by the chance constraint 3:

P ((pt,t+1
i − dt,t+1

i ) ≤ qti − (p̂t,t+1
i − d̂t,t+1

i )) ≥ 1− α, ∀t ∈ T, ∀i ∈ Nmicro (3)

Constraint 3 ensures that the probability of the total number of passengers using micromo-
bility vehicles at location i during time t+ 1 being less than or equal to the available fleet q̂t+1

i

is at least 1 − α, for all t ∈ T and i ∈ Nmicro. Here, pt,t+1
i − dt,t+1

i represents the total number
of passengers using micromobility vehicles at location i during time interval t to t + 1, and the
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supply q̂t+1
i at time t + 1 equals the current supply qti at time t minus the predicted demand,

which is determined by the predicted pickup demand p̂t,t+1
i minus the dropoff demand d̂t,t+1

i .
Equation 4 calculates the current supply, which is the supply at the previous time t−1 minus

the fleet changes due to the pickup (pt−1,t
i ) and drop off events (dt−1,t

i ) during the time interval
from t to t+ 1.

qti = qt−1
i − (pt−1,t

i − dt−1,t
i ), ∀t ∈ T, ∀i ∈ Nmicro (4)

We propose a heuristic algorithm 1 to select the optimal grid for utilizing micromobility
considering supply uncertainty. We first determine the appropriate public transport line based on
the passenger’s origin and destination (line 3), followed by selecting a grid where a micromobility
vehicle is available for use. The algorithm checks chance constraint 3 on each grid i ∈ Nmicro.
For each request r, it first verifies if the passenger can use micromobility vehicles in grid i to
reach their destination on time, then ensures that Constraint 3 holds (line 6), meaning the
system can accommodate the request with sufficient confidence. If the fleet availability and time
constraints are satisfied, the algorithm identifies an available vehicle, calculates the travel cost,
and selects the vehicle with the minimum cost (line 7). The vehicle’s status and location are
updated accordingly. If the constraint is not satisfied (line 9), then grid i will not be suggested
to request r.

Algorithm 1: Chance-Constrained Optimization for Trip Planning.
1 Input: Nmicro, Rt; Output: Zt

micro ; // Zt
micro represents the obtained solution.

2 for r ∈ Rt do
3 Select public transport line based on r’s origin and destination;
4 for i ∈ Nmicro do
5 if passenger r can utilize micromobility vehicles within grid i to reach their

destination on time then
6 if Constraint 3 is satisfied then
7 choose vehicle k according to objective 1; update status of k;
8 else
9 continue;

10 end
11 else
12 continue;
13 end
14 end
15 end

3 Results

We utilize demand and supply data from a leading shared micromobility provider in Rotterdam,
the Netherlands. The heatmap of pickup demand and parameters of fleet availability are shown
in Figures 2a and 2b, respectively. We compare the proposed approach against two benchmarks:
(1) an idealized model that assumes perfect knowledge of future demand and supply, and (2)
a prediction model with noises. The performance metrics used for evaluation are as follows:
False Positive—the count of cases where an alternative is recommended to passengers despite no
micromobility vehicle being available; False Negative—the count of cases where no recommen-
dation is made to passengers, even though a micromobility vehicle was available; and Served R
(%)—the percentage of passengers who are not served due to incorrect recommendations. The
results demonstrate that the proposed approach consistently yields significantly better selections
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while maintaining a high percentage of served passengers. In contrast, the prediction model with
noise exhibits higher rates of False Negative and fluctuating served passenger rates, especially
as the number of requests increases. This indicates that the proposed approach delivers reliable
performance for passengers.

(a) Heatmap of Pickup Demand (b) Mean and Variability of Available Fleet Size

Figure 2 – Case study in Rotterdam City Center (Beurs)
Table 1 – Comparison of Approaches with Different Instance Sizes

Instance Size Proposed Approach Idealized Model Prediction Model with Noises
K R False Positive False Negative Served R (%) False Positive False Negative Served R (%) False Positive False Negative Served R (%)

2 5 0 0 80 0 0 80 0 2 40
2 10 0 0 90 0 0 90 0 4 50
2 20 0 0 95 0 0 95 4 7 40

5 5 0 0 100 0 0 100 0 3 40
5 10 0 0 100 0 0 100 0 6 40
5 20 0 0 100 0 0 100 0 8 60

10 5 0 0 100 0 0 100 0 4 20
10 10 0 0 100 0 0 100 0 6 40
10 20 0 0 100 0 0 100 0 13 35

K: number of scooters; R: number of requests.

4 Discussion
The proposed stochastic optimization model presents a novel approach to addressing the un-
certainty in shared micromobility demand and supply, a critical factor in urban multimodal
transport systems. By accurately predicting demand distributions and estimating supply uncer-
tainty at various locations, the model enables passengers to make more informed and reliable
decisions about their trips. The use of stochastic approximation methods ensures that the rec-
ommendations are robust to the inherent variability of vehicle availability, ultimately reducing
passenger frustration and improving the overall efficiency of transport networks. One of the key
strengths of the model lies in its adaptability to different urban contexts, allowing for flexible in-
tegration with existing transport infrastructures. However, the success of this approach depends
heavily on the availability of high-quality real-time data and the ability to continuously refine
the predictive models based on changing conditions. Another limitation of our approach is the
lack of consideration for demand adaptation in response to trip planning information, suggesting
a need for a double-anticipatory or equilibrium model to better capture the dynamic interplay
between demand adjustments and planning decisions. Future research could also explore the
incorporation of dynamic pricing models, demand-side optimization, and the potential environ-
mental benefits of optimizing multimodal trip planning, especially in reducing traffic congestion
and carbon emissions.
References
Ding, Yi, Zhang, Linjing, Huang, Chao, & Ge, Rong. 2024. Two-stage travel itinerary recommendation

optimization model considering stochastic traffic time. Expert Systems with Applications, 237, 121536.
Oeschger, Giulia, Carroll, Páraic, & Caulfield, Brian. 2020. Micromobility and public transport integra-

tion: The current state of knowledge. Transportation Research Part D: Transport and Environment,
89, 102628.

TRISTAN XII Symposium Original abstract submittal


	INTRODUCTION
	Methodology
	Demand prediction of shared micromobility
	Stochastic optimization for multimodal trip planning under supply uncertainty

	Results
	Discussion

