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1 Introduction
The e-hailing market operates as a two-sided platform matching passengers with drivers. This mar-
ket experiences network effects, where a larger number of participants on one side increases the value
for the other side. However, when multiple platforms exist, the market becomes fragmented, diluting
these network effects and leading to inefficiencies such as increased cancellations and lower occupancy
rates. Multi-homing behaviors—where passengers and drivers use multiple platforms—can mitigate these
inefficiencies by extending access to the total demand and supply, but this aspect remains relatively un-
derexplored in existing research.

Current studies on the e-hailing market typically employ either equilibrium models (Zha et al., 2016),
which view the market in aggregate and assume static conditions, or dynamic models (Alonso-Mora et al.,
2017), which focus on individual agents and matching algorithms. Few have delved into multi-homing
behaviors, and those that have often consider extreme cases where either all passengers or all drivers
multi-home or single-home. This leaves a gap in understanding the nuanced effects of varying levels of
multi-homing among both passengers and drivers.

Addressing this gap, our study introduces both an aggregated equilibrium model and a disaggregated
dynamic model that account for partial multi-homing by passengers and drivers in a market with two
platforms. By treating the proportions of multi-homing agents as exogenous variables, we can analyze
the effects of different combinations of multi-homing levels. Multi-homing passengers may check multiple
platforms and potentially cancel trips due to impatience or dissatisfaction, while multi-homing drivers
may choose between platforms to maximize earnings. Comparing results from both models allows us to
quantify the isolated effects of multi-homing and offers insights into managing these behaviors to improve
market efficiency.

2 Equilibrium Model of the E-Hailing Market with Multi-Homing
We develop an equilibrium model for a symmetric duopoly e-hailing market where both passengers and
drivers can multi-home (use multiple platforms simultaneously). The total passenger demand rate Dp

and driver supply Vt are exogenous, as are the passenger and driver multi-homing rates θ and ϕ.
Demand and Supply: Multi-homing passengers enter the market at rate θDp, while single-homing

passengers enter each platform at rate (1−θ)
2 Dp. Thus, the total passenger arrival rate into one platform

is (1+θ)
2 Dp. Let puw and psw denote the number of waiting multi-homing and single-homing passengers on

a platform, respectively. The proportion of waiting passengers who are multi-homing is θ∗ =
pu
w

2ps
w+pu

w
.

Drivers can be single-homing or multi-homing. The total number of single-homing drivers on each
platform is vsi + vsm + vso = (1−ϕ)

2 Vt, and the total number of multi-homing drivers is vui + vum + vuo = ϕVt,
where vi, vm, vo represent idle, matched, and occupied drivers, and superscripts s and u denote single-
homing and multi-homing drivers. The idle driver multi-homing rate is ϕ∗ =

vu
i

2vs
i+vu

i
.

Matching Process: The matching rate m between passengers and drivers is modeled using a Cobb-
Douglas function:

m = A0(p
s
w + puw)

α1(vsi + vui )
α2 ,

where A0 is a constant, and α1 and α2 are elasticities. The matching rates involving single-homing (ms)
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and multi-homing (mu) drivers are:

ms = m

(
1− ϕ∗

1 + ϕ∗

)
, mu = m

(
2ϕ∗

1 + ϕ∗

)
.

The probability that an idle driver is matched in a given interval ∆ is ξv = ∆m
vs
i+vu

i
, and the effective

accepted matching rate is macc = ms +mu
(
1− ξv

2

)
.

Passenger Cancellations: Passengers may cancel if not matched within their patience threshold τ ,
following a truncated normal distribution. For single-homing passengers, the Type I cancellation rate is:

cs1 =
(1− θ)

2
Dp −macc

(
1− θ∗

1 + θ∗

)
.

For multi-homing passengers, considering they might be matched by the other platform, the Type I
cancellation rate is:

cu1 = θDp − (2− ξp)m
acc

(
2θ∗

1 + θ∗

)
,

where ξp = ∆macc

ps
w+pu

w
.

Pickup Times: The average passenger pickup time is estimated by:

wp = Γ0(p
s
w + puw)

γ1(vsi + vui )
γ2 ,

with constants Γ0, γ1, γ2. Due to multi-homing, the expected pickup times are adjusted: for multi-homing
drivers, wu

p = wp − σwπ
−1/2; for multi-homing passengers, wuu

p = wp − σw

(
3π−3/2

)
.

Service Quality and Type II Cancellations: Passengers may also cancel after being matched if
the service is unsatisfactory. The utility of a ride is:

uij = βs − βww
ij
p − βff,

where i, j ∈ {s, u} denote passenger and driver homing types, wij
p is the pickup time, f is the fare, and

βs, βw, βf are parameters. The acceptance probability is:

P ij
accept =

eu
ij

euo + euij ,

leading to the Type II cancellation rate:

cij2 = mij
(
1− P ij

accept

)
.

Driver States and Flow Conservation: After passengers accept matches, drivers transition be-
tween states. The number of matched single-homing drivers is:

vsm = wss
p (mss − css2 ) + wsu

p

(
1− ξp

2

)
(msu − csu2 ),

and for multi-homing drivers:

vum = 2

[
wus

p (mus − cus2 ) + wuu
p

(
1− ξp

2

)
(muu − cuu2 )

]
.

The number of occupied single-homing drivers is:

vso = t (bss + bsu) ,

and for multi-homing drivers:
vuo = 2t (bus + buu) ,

where t is the average trip duration, and boarding rates are:

bss = mss − css2 , bsu =

(
1− ξp

2

)
(msu − csu2 ), bus = mus − cus2 , buu =

(
1− ξp

2

)
(muu − cuu2 ).

Equilibrium Conditions: By solving these equations simultaneously, we determine the equilibrium
state of the e-hailing market under given Dp, Vt, θ, and ϕ. The model captures the impact of multi-
homing on matching rates, cancellations, pickup times, and driver states, providing insights into market
efficiency under varying multi-homing levels.
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3 Dynamic Model of the E-Hailing Market with Multi-Homing
We develop a dynamic model of the e-hailing market, focusing on interactions between passengers, drivers,
and platforms from the perspective of one platform.

Passengers: Single-homing passengers join a platform, provide their origin and destination, and wait
to be matched. When a potential match is found, the platform first asks the driver to accept; only after
the driver’s acceptance is the passenger notified. Passengers are impatient; if not notified within their
matching patience ∆m

i,1, they cancel their request. Upon notification, passengers evaluate the trip based
on pickup time wa,1

i,1 and fare fi,1. The utility of accepting the trip is:

ur
i,1 = βr

i,1 − βt
i,1w

a,1
i,1 + ϵri,1,

while the utility of other modes is:
uo
i,1 = βo

i,1 + ϵoi,1.

The probability of acceptance is:

Prri,1 =
eu

r
i,1

eu
r
i,1 + eu

o
i,1

.

Multi-homing passengers join both platforms simultaneously. If notified by one platform, they wait for
a period ∆p

k̂
or until their overall matching patience ∆m

k̂
before deciding. If matched by both platforms,

they select the trip with the shorter pickup time and decide to accept or reject it using the same utility
model.

Drivers: Single-homing drivers always accept trips assigned by the platform and are paid a portion
of the fare. They can be in one of four states: idle, pending passenger confirmation, matched (dispatched
but unoccupied), and occupied. Multi-homing drivers are idle on both platforms. If notified of a match
by one platform, they may wait for ∆v

ĉ for a potential match from the other platform. If matched by

both, they compare per-unit-time earnings and choose the higher,
ca,1
i,1

wa,1
i,1 +|OiDi|

, where ca,1i,1 is the driver’s

wage and |OiDi| is the trip duration.
Platforms: Platforms have information on passengers’ origins Oi, destinations Di, and drivers’

locations but cannot distinguish between single-homing and multi-homing agents. The fare structure
includes a fixed base price λc and a variable price λt based on trip duration:

fi,1 = λc + λt|OiDi|.

Drivers receive a portion λv of the fare:
ca,1i,1 = λvfi,1.

Platforms use a batch-matching algorithm every ∆ seconds, matching idle vehicles V̄1 and unmatched
passengers P̄1 to minimize total pickup times. The matching problem is formulated as:

min
xp,v

∑
(p,v)∈E

wp,vxp,v,

subject to: ∑
v

xp,v ≤ 1, ∀p ∈ P̄1;
∑
p

xp,v ≤ 1, ∀v ∈ V̄1; xp,v ∈ {0, 1}.

After matching, drivers are notified first; upon their acceptance, passengers are informed and decide
whether to accept based on the utility model. If the pickup time exceeds a threshold ∆r

1, the match is
discarded to avoid excessively long pickups.

This dynamic model captures the behaviors and interactions of single-homing and multi-homing pas-
sengers and drivers in the e-hailing market, accounting for decision-making processes, matching algo-
rithms, and platform operations.

4 Numerical Experiments
We conducted numerical experiments using both the proposed equilibrium model and the dynamic sim-
ulation model to analyze the effects of joint passenger and driver multi-homing in an e-hailing market.
For the equilibrium model, we specified exogenous variables and calibrated parameters. In the dynamic
model, we simulated the Manhattan road network, where passengers with random origins and destina-
tions entered the market at a given rate, and vehicles were incrementally added until reaching a fleet
size of 4,000. Each experiment included a 60-minute warm-up period, after which performance indicators
were measured and averaged over five runs to ensure reliability. Passenger and driver decision parame-
ters were set to reflect heterogeneity among passengers, with some values drawn from bounded normal
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distributions. Pricing, wage structures, and matching method parameters were consistent across both
platforms.

To assess the impact of multi-homing, we tested different combinations of passenger and driver multi-
homing levels, defined as the proportion of passengers (θ) or drivers (ϕ) who use multiple platforms.
Both θ and ϕ ranged from 0% to 100% in 20% increments, resulting in 36 distinct scenarios. In each
experiment for both models, we maintained a total demand of four passenger requests per second. This
systematic variation allowed us to examine the effects of multi-homing on key performance indicators
across a spectrum of market conditions.

(a) Passenger pickup time
(Equilibrium model)

(b) Single-homing passenger
pickup time (Equilibrium model)

(c) Multi-homing passenger
pickup time (Equilibrium model)

(d) Passenger pickup time
(Simulation model)

(e) Single-homing passenger
pickup time (Simulation model)

(f) Multi-homing passenger
pickup time (Simulation model)

Figure 1 – Average passenger pickup times for varying levels of passenger (θ) and driver (ϕ) multi-homing,
including total, single-homing, and multi-homing passengers.

Figure 1a shows the average pickup times for all passengers for varying combinations of passenger and
driver multi-homing ratios using the equilibrium model. Whereas Figure 1d shows the same indicators
using the simulation model. It can be observed that both sets of results exhibit similar trends. Both figures
show that as multi-homing ratios increase for either passengers or drivers, the average passenger pickup
time is reduced. In Figures 1e and 1f, the equilibrium model average pickup times for single-homing
passengers and multi-homing passengers are shown respectively. Their counterparts in the simulation
model are shown in Figures 1b and 1c respectively. It can still be observed that the average multi-
homing passenger pickup time is reduced as either the passenger or driver multi-homing ratios increase.
Interestingly, single-homing passengers’ average pickup time is also reduced as there are more multi-
homing passengers. Additionally, we observe that the multi-homing passengers’ average pickup times are
always lower than that of single-homing passengers. It suggests that all passengers benefit from additional
passenger multi-homing, while multi-homing passengers benefit more than single-homing passengers by
their own actions.

5 Summary
We develop equilibrium and dynamic models to evaluate passenger and driver multi-homing in e-hailing
markets. Results show that multi-homing generally enhances market performance, benefiting multi-
homing passengers while disadvantaging single-homing ones.
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