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1 INTRODUCTION

The Service Network Design Problem (SNDP) is a fundamental optimization problem focusing
on planning transportation operations for carriers to handle shipments of volumes smaller than
capacities of vehicles (Crainic, 2000, Wieberneit, 2008, Crainic & Hewitt, 2021). It is particularly
prominent in industries such as parcel and small package delivery as well as Less-Than-Truckload
(LTL) freight. In these industries, carriers frequently consolidate multiple shipments into a single
vehicle dispatch to enhance cost-effectiveness, increasing vehicle utilization and reducing trans-
portation costs associated with the vehicles. These carriers make use of a network of terminals
where shipments can be transferred from incoming to outgoing vehicles, thus enabling the con-
solidation of multiple shipments onto a single outgoing vehicle. Each shipment is scheduled
for pickup at its respective origin terminal at a proper time after it becomes available. It is
then transported through the terminal network by following specific routing and consolidation
plans, to its destination terminal within a specified time-frame. Shipments may be temporarily
stationed at both origin and intermediate terminals along their route, waiting for consolidations.

While the classic SNDP is defined on a planning horizon discretized into a finite number
of discrete time units, the Continuous-Time SNDP (CTSNDP) is defined on a continuous-time
planning horizon to prevent errors arising from discretization. The CTSNDP poses a significant
computational challenge due to the continuous nature of time and the increased complexity of
optimization. Existing algorithms for CTSNDP and its variants primarily adopt a Dynamic
Discretization Discovery (DDD) solution framework (Boland et al., 2017, Marshall et al., 2021,
He et al., 2022, Shu et al., 2024). This framework iteratively refines the discretization, which
is a finite set of discrete time units, constructs a partially time-expanded network based on the
discretization, and leverages the network to derive relaxations and feasible CTSNDP solutions.

However, existing DDD algorithms for the CTSNDP face some challenges in achieving effi-
cient solutions, particularly for those benchmark instances characterized by a high-cost ratio of
vehicle-based costs over flow-based costs and high time flexibility, nearly half of which still need
to be solved. The limitations of current DDD algorithms in efficiently solving such instances can
be attributed to several factors: (i) a weak relaxation that allows numerous impossible consol-
idations indicated by the available times and due times of shipments; (ii) the ineffectiveness of
heuristic methods for deriving upper-bound solutions; and (iii) the ineffectiveness of the refine-
ment methods that fail to reach a reasonably fine discretization or require excessive iterations.

In this study, we develop an enhanced DDD algorithm for the CTSNDP to address the
aforementioned challenges. While the proposed enhanced DDD algorithm shares a similar solu-
tion framework with previous DDD algorithms, our study distinguishes itself through three key
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novel improvements. (i) We introduce a new initial relaxation, based on timed-node-based time-
expanded commodity networks for shipments. This involves reduction of decision variables and
incorporation of a minimum set of significant time points to the initial discretization, thereby
effectively eliminating impossible consolidations from the relaxation model. (ii) We employ a
novel MIP-based approach for computing an upper bound at each iteration based on a collec-
tion of relaxation solutions. Unlike the heuristic methods applied by Boland et al. (2017) and
Marshall et al. (2021), our EDDD algorithm utilizes an MIP model that aims to find the best
CTSNDP solution among all feasible solutions that adhere to the routing plan provided by each
relaxation solution. (iii) We introduce a new three-stage method to refine discretization, which
involves removing newly identified structural patterns (known as minimum too-long paths) that
cause the infeasibility of the relaxation solutions.

The computational study demonstrates that, with the improvements above, our enhanced
DDD algorithm exhibits exceptional performance. It solves all benchmark instances of the CT-
SNDP to optimality within one hour, for the first time in the literature.

2 Problem Description

The CTSNDP is defined as follows. We are given a directed graph D = (N ,A) where N
represents the physical terminal set and set A indicates the arc set, and a set K of commodities
which must be routed through the network D. In the network D, each arc (i, j) is characterized by
its travel time, a per-unit-of-flow cost for each commodity k ∈ K, a fixed cost for each dispatch
of a vehicle on the arc, and a capacity for each vehicle served on the arc. Each commodity
k ∈ K is defined by a single origin, a single destination, a transportation demand, and a time
window defined by its earliest available time at its origin and the due time for arriving at its
destination. The demand of each commodity must be delivered from the origin to the destination
following a single delivery path or route. Multiple demands can be consolidated to pass through
arc (i, j) ∈ A, reducing the total fixed cost for using the service on arc (i, j). For all practical
purposes, we allow the travel times and time window restrictions to be integers in minutes.

The CTSNDP is to determine the routing and consolidation plans for the commodities and
the required services/resources to execute them. It aims to minimize total flow and fixed costs
while ensuring compliance with time constraints on the commodities. In alignment with Boland
et al. (2017), we assume that holding shipments at a terminal incurs no additional costs. However,
our enhanced method can be easily adapted to the case with non-zero holding costs.

As shown in Boland et al. (2017), the CTSNDP can be formulated (approximately) by a
time-indexed mixed integer programming (MIP) model based on a time-expanded network D∆

T =
(N∆

T ,A∆
T ∪H∆

T ). The accuracy of this modeling approach depends the given discretization param-
eter ∆. Here, T = {Ti}i∈N represents the discretization, where Ti = {0,∆, ...,∆⌈maxk∈K lk/∆⌉}
is a set of discrete time points for each i ∈ N . The node set N∆

T consists of a node (i, t) for each
i ∈ N and t ∈ Ti. The set of arcs in D∆

T includes two subsets of timed-arcs. (i) Holding arcs
H∆

T : For every terminal i ∈ N and every n ∈ {1, ..., ni − 1}, there exists an arc ((i, tin), (i, t
i
n+1))

representing a holding of (tin+1− tin) time units at terminal i. (ii) Service arcs A∆
T : For every arc

(i, j) ∈ A and every node (i, t) ∈ N∆
T , there exists an arc ((i, t), (j, t̄)) with t̄ = t + ∆⌈τij/∆⌉,

representing a dispatch from terminal i at time t arriving at time t̄ at terminal j.
Let SND(D∆

T ) indicate the time-indexed MIP model of the CTSNDP based on D∆
T . Its

objective function is to minimize the total cost, calculated as the sum of fixed and flow costs.
Its constraints include flow conservation constraints and capacity constraints.

3 Methodology

The optimal solution for the CTSNDP can be obtained by solving the time-indexed MIP model
SND(D∆̂

T ) based on the fully time-expanded network D∆̂
T that contains all necessary time points.
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However, the size of the fully time-expanded network D∆̂
T can be prohibitively large for practical

instances, and solving the resulting SND(D∆̂
T ) using conventional techniques becomes challenging.

Therefore, Boland et al. (2017) proposed a DDD algorithm, which iteratively expands the size
of the time-expanded network. However, existing DDD algorithms for the CTSNDP still face
challenges in achieving efficient solutions.

In this study, we propose an enhanced DDD algorithm for the CTSNDP, denoted as EDDD,
which follows the DDD framework but incorporates a new initial relaxation model to strengthen
the lower bound, a new MIP-based approach to compute the upper bound, and a new three-stage
method to refine discretization.

The EDDD algorithm begins by enhancing the initial discretization T through the incorpo-
ration of a minimum set of significant time points to eliminate impossible consolidations. These
time points are then utilized to construct the corresponding timed-node-based time-expanded
commodity networks DK

T and the initial relaxation model SND(DK
T ). Model SND(DK

T ) is obtained
by substituting the network D∆

T with DK
T in the time-indexed MIP model SND(D∆

T ).
Next, the EDDD algorithm solves the relaxation model SND(DK

T ) iteratively to compute a
collection of relaxation solutions in each iteration, which includes the optimal relaxation solution
with its objective serving as a valid lower bound for the CTSNDP. For each obtained relaxation
solution, an upper bound for the CTSNDP is then derived by solving a new MIP model. This
MIP model aims to achieve a feasible CTSNDP solution, aligning with the routing plan derived
from the relaxation solution, with the total cost minimized.

Accordingly, our algorithm updates the best lower bound and upper bound obtained. If the
two bounds meet a given optimality tolerance, the EDDD algorithm terminates, as an optimal
solution to the CTSNDP is found (within the imposed tolerance). Otherwise, we apply a new
three-stage method to refine the discretization T based on the obtained relaxation solutions.
It involves adding new time points to T to eliminate the newly identified structural patterns
(referred to as minimum too-long paths) that cause infeasibility of the relaxation solutions.

4 Computational Results and Conclusions

We conducted computational experiments on a PC with a 3.2GHz CPU and a 64 GB RAM
to demonstrate the effectiveness and efficiency of the newly proposed EDDD algorithm and its
key components. We compare its computational results with the results reported in Marshall
et al. (2021) for BHMS and MBSH, the two DDD algorithms developed by Boland et al. (2017)
and Marshall et al. (2021), respectively. To further assess the performance of EDDD, we also
implemented and tested the DDD algorithm of Boland et al. (2017) for the CTSNDP, referred to
as IDDD. We evaluated the performance of these different DDD algorithms by solving the same
558 CTSNDP instances used in Marshall et al. (2021), which are further categorized according to
time flexibility and cost ratio as HC/LF”, “HC/HF”, “LC/LF” and “LC/HF”. In the following
experiments, we solved each CTSNDP instance to an optimality tolerance of 0.01 with a time
limit of one hour for both EDDD and IDDD, as done for BHMS and MBSH.

Table 1 summarizes the computational results. For each group of instances, it displays the
number of instances in the group. For each algorithm, it displays the average gap between
the best upper bound (UB) and the best lower bound (LB) obtained (“%Gap”), i.e., (UB −
LB)/UB × 100%, the average computing time in seconds (“Time(s)”), the average number of
iterations (“#Iterations”), and the percentage of instances solved to optimality (“%Optimal”)
within the given optimality tolerance and time limit.

The results in Table 1 demonstrate that EDDD successfully solves all 558 instances within
one hour. The other three methods fail to solve all instances in groups “HC/LF” and “HC/HF”.
EDDD achieves this with significantly fewer iterations and shorter computational times. Notably,
all 558 CTSNDP instances are solved optimally within five iterations, and for groups “HC/LF”,
“LC/LF”, and “LC/HF”, the majority of instances (nearly 80%) are solved optimally within a
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Table 1 – Summary Results on the CTSNDP Instances

Group Algorithm %Gap Times(s) #Iterations %Optimal

HC/LF BHMS 0.08 1391.1 5.3 77.1
183 MBSH 0.12 677.8 14.8 85.8

IDDD 0.99 285.5 13.6 95.6
EDDD 0.73 9.1 1.5 100.0

HC/HF BHMS 0.56 1966.7 6.0 53.7
177 MBSH 0.84 1693.8 17.5 56.5

IDDD 2.34 1377.7 14.8 70.1
EDDD 0.85 131.1 2.7 100.0

LC/LF BHMS 0.00 28.6 3.7 100.0
94 MBSH 0.00 0.6 6.5 100.0

IDDD 0.71 0.4 3.8 100.0
EDDD 0.33 0.2 1.0 100.0

LC/HF BHMS 0.00 1.5 2.5 100.0
104 MBSH 0.00 0.1 3.2 100.0

IDDD 0.51 0.1 1.3 100.0
EDDD 0.08 0.1 1.0 100.0

single iteration. Moreover, take the algorithm IDDD as a baseline algorithm, in the first iteration,
EDDD achieves maximum improvements in the lower and upper bounds of 22.92% and 37.70%,
respectively. Additionally, the percentage ratio between the number of time points in the final
discretization produced by EDDD and the complete discretization is less than approximately 4%.
These highlight the superior performance of EDDD compared to other existing DDD methods
for the CTSNDP, emphasizing the effectiveness of the new initial relaxation, the new MIP-based
method for the upper bound, and the new three-stage refinement method.

In summary, this study introduced an enhanced dynamic discretization discovery (EDDD)
algorithm to solve the continuous-time service network design problem (CTSNDP). The enhanced
DDD algorithm follows a dynamic framework as in previous DDD algorithms but stands out
through innovative components. It exhibits exceptional performance, achieving optimality within
one hour for all classic CTSNDP instances. In contrast, existing DDD algorithms struggle to
solve nearly half of the high-cost-ratio and high-time-flexibility instances. These innovative
components provide a solid foundation for enhancing DDD algorithms for different variants of
the CTSNDP and various other transportation problems.
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