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1 Introduction
In many markets, multiple ride-hailing platforms compete fiercely due to low switching costs for both pas-
sengers and drivers, who often use several platforms simultaneously (a practice known as multi-homing)
(Guo et al., 2023). This intense competition means companies must focus on customer satisfaction factors
such as fare and waiting time to retain users, as any attempt to increase prices or commissions risks losing
market share. Passengers tend to prefer platforms offering quicker responses and/or lower costs, while
drivers value flexibility and the ability to choose among various matching offers based on their preferences
for income, pickup times, and locations (Yang et al., 2024).

This paper studies a duopoly ride-hailing market involving passengers, drivers, and two competing
platforms: Platform 1 (our focus) and Platform 2 (the competitor). Both platforms collect idle drivers
and pending passenger requests, assuming all participants use both platforms (multi-homing). They de-
termine fares and wages for each possible passenger-driver pair and present matching options. Passengers
and drivers select the most favorable option based on utility maximization or may decline and wait for
future opportunities. A match is finalized only if both accept the same offer from the same platform.
Impatient participants may enter or exit the market between assignments due to unsuccessful matching
attempts. Key characteristics and assumptions include: (i) Passengers and drivers are multi-homing, par-
ticipating in both platforms simultaneously. (ii) Each platform can propose at most one matching offer
to each passenger and driver per matching instance, including fare and wage information. (iii) Passengers
and drivers select at most one matching from the offers (at most two, from each platform) received. (iv)
Each platform knows the aggregated choice behaviors of passengers and drivers from historical data.

The intraday competition is modeled as a repeated game with infinite decision steps, exploring three
scenarios: (i) Perfect Information with Fixed Competitive Tactic (PIFCT), where Platform 1 has full
knowledge of Platform 2 ’s strategies and can optimize accordingly; (ii) Limited Information with Fixed
Competitive Tactic (LIFCT), where Platform 1 must predict Platform 2 ’s strategies based on limited
market feedback; and (iii) Limited Information with Dynamic Competitive Tactic (LIDCT), where Plat-
form 2 dynamically adjusts its strategies over time, requiring Platform 1 to adapt in real time without
complete information. These settings address challenges such as real-time strategic decision-making,
partial observability of competitor actions, and managing the complexities of high-dimensional decision
spaces inherent in the ride-hailing market.

2 Problem Statement
A matching solution for platform i is defined over the set of orders O and idle drivers D collected between
two matching instances. The decision variable xo,d,i equals 1 if order o ∈ O is matched with driver d ∈ D
on platform i, and 0 otherwise. Even if xo,d,i = 1, the dispatch occurs only if both the passenger and
driver accept the matching on platform i. The platform determines the fare fo,d,i for the passenger and
the wage wo,d,i for the driver.

2.1 Passenger and Driver Choice Behaviour
Upon receiving matching proposals, passengers and drivers decide whether to accept them. The utility
of passenger o accepting service from driver d on platform i is:

TRISTAN XII Symposium Original abstract submittal



2

uo,d,i = α0,o − α1,o · fo,d,i − α2,o · τo,d,i, ∀o ∈ O, (1)

where τo,d,i is the estimated pickup time, and α0,o, α1,o, and α2,o are passenger-specific preference coef-
ficients. Similarly, the utility of driver d accepting order o on platform i is:

vo,d,i = β0,d + β1,d · wo,d,i − β2,d · τo,d,i − β3,d · ξo, ∀d ∈ D, (2)

with β0,d, β1,d, β2,d, and β3,dbeing driver-specific preference coefficients. ξo denotes the estimated travel
time from the pick-up location to the drop-off location for o.

Let uc
o and vc

d denote the utility of declining for passenger o and driver d, respectively. The probability
that passenger o selects driver d on platform i can be modeled as:

po,d,i =
exp(uo,d,i)

exp(uc
o) + exp(uo,d,i) +

∑
d′∈D [exp(uo,d′,j)xo,d′,j ]

, (3)

and the probability that driver d selects order o on platform i can be modeled as:

qo,d,i =
exp(vo,d,i)

exp(vc
d) + exp(vo,d,i) +

∑
o′∈O [exp(vo′,d,j)xo′,d,j ]

. (4)

2.2 Opponent Strategy

We model Platform 2 ’s fare, wage, and matching strategy with the following assumptions:

• Platform 2 uses a linear fare formula based on base fare θ0, estimated travel distance ETDo, and
estimated travel time ETTo:

fo,d,2 = θ0 + θ1 · ETDo + θ2 · ETTo. (5)

• It adopts a fixed commission rate λ for drivers, so the driver’s wage is:

wo,d,2 = λ · fo,d,2. (6)

• Parameters θ0, θ1, θ2, and λ have bounds to reflect market conditions:

θ0 ∈ [θmin
0 , θmax

0 ], θ1 ∈ [θmin
1 , θmax

1 ], θ2 ∈ [θmin
2 , θmax

2 ], λ ∈ [λmin, λmax].

Platform 2 assigns drivers to orders using a bipartite maximum-weight matching model:

max
xo,d,2

∑
o∈O

∑
d∈D

Ao,d,2 · xo,d,2 (7)

s.t.
∑
d∈D

xo,d,2 ≤ 1, ∀o ∈ O (8)∑
o∈O

xo,d,2 ≤ 1, ∀d ∈ D (9)

xo,d,2 ∈ {0, 1}, ∀o ∈ O,∀d ∈ D. (10)

Ao,d,2 =
fo,d,2 − wo,d,2

τo,d,2
. (11)

Constraints (8) and (9) ensure that each order is matched with at most one driver and vice versa.
The objective maximizes the platform’s profit per unit of pickup time.

2.3 Joint Optimization Formulation

The goal is to enable Platform 1 to dominate the market and achieve an asymmetric equilibrium—a
stable state where it holds a significantly larger market share and generates more profit than Platform
2. To achieve this, Platform 1 seeks to maximize its expected profit by optimally choosing matchings,
fares, and wages, subject to constraints:
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Π1 = max
fo,d,1,wo,d,1,xo,d,1

∑
o∈O

∑
d∈D

Po,d,1

(
fo,d,1, wo,d,1 | f̂o,d,2, ŵo,d,2, x̂o,d,2

)
· xo,d,1 (12)

subject to
∑
d∈D

xo,d,1 ≤ 1, ∀o ∈ O (13)∑
o∈O

xo,d,1 ≤ 1, ∀d ∈ D (14)

xo,d,1 ∈ {0, 1}, ∀o ∈ O,∀d ∈ D (15)

where Po,d,1 is the expected profit of matching order o with driver d in Platform 1 :

Po,d,1

(
fo,d,1, wo,d,1 | f̂o,d,2, ŵo,d,2, x̂o,d,2

)
= po,d,1 · qo,d,1 · (fo,d,1 − wo,d,1), ∀o ∈ O,∀d ∈ D (16)

f̂o,d,2, ŵo,d,2, and x̂o,d,2 are estimated fare, wage, and matching decisions of Platform 2 from the perspec-
tive of Platform 1.

3 Methodology
We model the competition between the two ride-hailing platforms as a two-player repeated game G, where
each platform i ∈ {1, 2} has private information si,pri (invisible to the opponent) and public information
si,pub (accessible to the opponent). Each platform’s strategy depends on its own private information and
the opponent’s public information, ensuring decisions are independent of the opponent’s private data. At
each decision step t, we examine three competition settings summarized in Table 1:

Table 1 – The information positions in the three competition games. (* indicates all information related
to the fare, wage, and matching decisions of Platform 1.)

G Platform 1 Platform 2
s1,pri s1,pub s2,pri s2,pub

PIFCT * ∅ ∅ θ0, θ1, θ2, λ, and Eqs. 5-11
LIFCT * ∅ θ0, θ1, θ2, λ Eqs. 5-11
LIDCT * ∅ θ0(t), θ1(t), θ2(t), λ(t) Eqs. 5-11

In the PIFCT setting, Platform 1 has full knowledge of Platform 2 ’s fixed parameters and strategies,
allowing it to optimize fares, wages, and matchings directly. The LIFCT setting introduces incomplete
information; Platform 1 knows the form of Platform 2 ’s strategies but not the exact parameter values,
requiring it to predict these parameters based on observed market outcomes. This prediction is modeled
as a continuum-armed bandit (CAB) problem, utilizing market feedback as a proxy for the unknown
parameters. The Upper Confidence Bound (UCB) algorithm with Gaussian Processes is employed to
iteratively select parameter estimates that maximize expected rewards.

In the more complex LIDCT setting, Platform 2 dynamically adjusts its parameters over time in
response to market conditions, using a fuzzy logic controller. Platform 1 must continuously adapt to
these changes without direct knowledge of the adjustments. This scenario is addressed by extending
the CAB problem to a non-stationary environment, using a Discounted UCB with Dynamic Tuning
(DUCBDT). This approach allows Platform 1 to update its parameter predictions and strategies in real
time, accounting for the evolving tactics of Platform 2 and the inherent uncertainties in the competitive
market.

4 Numerical Experiments
We evaluate the performance of various competitive scenarios within a duopoly ride-hailing market using
a simulated environment based on Manhattan’s road network from OpenStreetMap. Simulations run
during the morning peak hours from 7:00 AM to 9:00 AM, using the first two weekdays of February
2023 as test data. Both platforms collect data on available passengers and drivers, employ optimization
methods to determine optimal fares, wages, and matchings, and finalize assignments based on individual
choice models.

Passenger demand data are sourced from Yellow Cab trip records. Drivers are synthesized and dis-
tributed across different regions, totaling 3,000 drivers in the simulation. We introduce several opti-
mization methods as benchmarks—Static, Perfect Information, Random Guess, UCB, DUCBDT, and
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Fuzzy Logic Controller—to compare across six competition scenarios ranging from perfect information
to limited information with dynamic competitive tactics.

Table 2 – Results of different competition scenarios during 07:00 AM - 09:00 AM (averaged over 10
test days). Numbers in parentheses indicate the average matching rate of the platform. The UCB and
DUCBDT methods are reset at the start of each test day.

Scenario Platform Methods Avg. Profit Avg. Assignments Cancellations Attrition
[USD] [trip] [trip] [driver]

PIFCT 1 Perfect information 58,205.9 7,007.0 (84.4%) 825.0 (9.9%) 598.02 Static 1,207.3 469.0 (5.6%)

LIFCT 1 Static 12,942.2 3,788.0 (45.6%) 765.0 (9.2%) 1,655.02 Static 12,551.7 3,748.0 (45.2%)

LIFCT 1 Random guess 28,272.9 4,883.0 (58.8%) 727.0 (8.8%) 610.02 Static 10,148.1 2,691.0 (32.4%)

LIFCT 1 UCB 41,966.1 5,788.0 (69.7%) 733.0 (8.8%) 595.02 Static 6,451.8 1,780.0 (21.4%)

LIDCT 1 Static 4,693.2 1,596.0 (19.2%) 919.0 (11.1%) 682.02 Fuzzy 15,634.6 5,786.0 (69.7%)

LIDCT 1 DUCBDT 18,685.7 3,972.0 (47.8%) 911.0 (11.0%) 657.02 Fuzzy 4,474.0 3,418.0 (41.2%)

Based on Table 2, the numerical results over ten test days show that in the "Perfect Information vs.
Static" scenario, Platform 1 achieves the highest profit ($58,205.9) and most assignments (7,007 trips with
an 84.4% matching rate), significantly outperforming Platform 2 due to its complete market information.
In the LIFCT scenarios, "Static vs. Static" yields similar performance for both platforms but exhibits
the highest driver attrition (1,655 drivers leaving), suggesting that a lack of adaptive strategies may lead
to less favorable conditions for drivers. "Random Guess vs. Static" shows Platform 1 improving its
profit to $28,272.9 and assignments to 4,883 trips (58.8% matching rate), while the "UCB vs. Static"
scenario further enhances Platform 1 ’s performance to $41,966.1 and 5,788 trips (69.7% matching rate),
demonstrating the effectiveness of the UCB algorithm in enabling Platform 1 to learn and adapt over
time even with limited information. In the LIDCT scenarios, "Static vs. Fuzzy" results in Platform 2
dominating the market with $15,634.6 profit and 5,786 assignments (69.7% matching rate), while Platform
1 lags behind, indicating the effectiveness of dynamic tactics. However, in "DUCBDT vs. Fuzzy,"
Platform 1 employing the DUCBDT algorithm improves its performance significantly to $18,685.7 profit
and 3,972 assignments (47.8% matching rate), outperforming Platform 2, demonstrating the advantage
of adaptive strategies even against a dynamic competitor. Therefore, the findings suggest that intense
competition alone does not guarantee better market outcomes.

5 Conclusion
This paper analyzes intraday competition between two ride-hailing platforms in a duopoly market. The
findings underscore the importance of information access and adaptive strategies, suggesting future re-
search into cooperative mechanisms between platforms and regulatory frameworks to enhance market
efficiency and align platform behavior with societal welfare.
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