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1 INTRODUCTION

Drones are increasingly used in last-mile logistics to streamline the final, often complex, delivery
stage. While synchronized truck-and-drone systems, where trucks act as mobile depots, have been
widely studied (Boccia et al., 2023), direct drone deliveries face regulatory and safety challenges.
An emerging alternative is using drones to resupply delivery trucks in transit, bypassing some
regulatory barriers and enhancing efficiency without direct-to-customer deployment (Dayarian
et al., 2020). This model reduces reliance on centralized depots, improves delivery speed, supports
real-time order fulfillment, and enhances flexibility, cost-effectiveness, and sustainability. Drones
can deliver fresh packages to trucks on the road, reducing detours and fuel usage, especially in
rural areas, while efficiently meeting fluctuating demand.

A system with a single truck receiving new orders en route via drone from a depot is defined
as the Traveling Salesman Problem with Release Dates and Drone Resupply (TSPRD-DR).
Research on this topic is still limited. It was first introduced by Dayarian et al. (2020) in a same-
day delivery context and subsequently approached by a simulation method by Moshref-Javadi
et al. (2023). However, the formalization and modeling of the TSPRD-DR were provided by
Pina-Pardo et al. (2021), who later extended the framework to encompass vehicle routing and
dynamic scenarios in Pina-Pardo et al. (2024b) and Pina-Pardo et al. (2024a), respectively. In
particular, in their first study, Pina-Pardo et al. (2021) present the TSPRD-DR as a variant of the
TSPRD introduced by Archetti et al. (2018), whereby a vehicle can return to the depot multiple
times for resupply, thus allowing it to execute multiple routes to service end customers. They
propose a mixed-integer linear programming (MILP) formulation alongside a decomposition-
based heuristic approach for larger instances. However, the proposed MILP model suffers from
dimensional drawbacks due to the presence of big-M constraints, rendering it ineffective even
for small instances. In this work, we propose a novel formulation for the TSPRD-DR (Section
2). Furthermore, we introduce a Branch-and-Cut (B&C ) algorithm to solve the problem and
present preliminary results demonstrating the effectiveness of our approach in comparison to the
existing literature (Section 3).
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2 PROBLEM DESCRIPTION AND MILP FORMULATION

The TSPRD-DR aims to find a minimum-time route for a single truck that must serve a set of
customers and can be resupplied en route with new orders by a drone. We assume that each
customer places at most one order per day and that the release dates of these orders are known
at the start of the planning horizon. Orders can be loaded onto the truck either at the depot or
via the drone while en route. Additionally, we assume that the drone can rendezvous with the
truck only at customer locations, and we account for unloading and drone launching times when
these meetings occur. The truck does not return to the depot during the day, and the drone
must return to the depot before it can be deployed again for resupply. We assume that the drone
has specified capacity and flight endurance limits, while the truck has infinite capacity.

Given these assumptions, the TSPRD-DR can be formulated on a complete graph G = (V,A),
where V is the set of nodes and A is the set of arcs. Specifically, V consists of the union of the set
of customers C and the nodes s and t, representing the starting and ending depots, respectively.
The release date for customer i ∈ C is denoted by ri, with ri ≥ 0. A truck travel time tij is
associated with each arc (i, j) ∈ A. Additionally, each customer i ∈ C has an associated drone
travel time di, as the drone can only travel between the depot and each customer location. Let
Dtl and Cap represent the drone flight endurance and maximum capacity, respectively. The
time required for loading and unloading orders is denoted by stime. Finally, we define the set
K = {1, ..., kmax} as the set of resupplies, where kmax is the maximum number of possible re-
supplies. Given this setting, the following variables are defined:
- xkij , ∀(i, j) ∈ A, k ∈ K: equal to 1 if the arc (i, j) is traversed by the truck after the kth resupply
and before the next one; 0 otherwise;
- yki , ∀i ∈ C, k ∈ K: equal to 1 if customer i is served by the truck after the kth resupply and
before the next one; 0 otherwise;
- zki , ∀i ∈ C, k ∈ K: equal to 1 if the order of customer i is loaded onto the truck during kth

resupply; 0 otherwise;
- δki , ∀i ∈ V, k ∈ K ∪ {kmax + 1}, equal to 1 if the kth resupply occurs at node i; 0 otherwise;
- τkstart and τkend, ∀i ∈ V, k ∈ K: continuous variables indicating the departure and arrival time
of the truck at a node/depot where the kth and (k + 1)th resupply occurs, respectively.

On this basis, the TSPRD-DR can be modeled as follows:

minimize τkmax
end (1)∑

j∈V
xkij −

∑
j∈V

xkji = δki − δk+1
i i ∈ C k ∈ K (2)

∑
j∈V

x1sj = δ1s (3)

∑
j∈V

xkjt = δk+1
t k ∈ K (4)

yki =
∑
j∈V

xkij i ∈ C k ∈ K (5)

∑
k∈K

yki = 1 i ∈ C (6)∑
i,j∈S

xkij ≤ |S| − 1 S ⊂ V k ∈ K (7)

τkend = τkstart +
∑

(i,j)∈A

tijx
k
ij k ∈ K (8)

τkstart ≥ τk−1
end + ST ime

∑
i∈C

δki k ∈ K \ {1} (9)

TRISTAN XII Symposium Original abstract submittal



3

τkstart ≥ τk−1
start +

∑
i∈C

(di + ST ime) δ
k−1
i +

∑
i∈C

(di + ST ime) δ
k
i k ∈ K \ {1} (10)

τkstart −
∑
j∈C

(dj + ST ime)δ
k
j ≥ riz

k
i i ∈ C k ∈ K \ {1} (11)

τ1start ≥ riz
1
i i ∈ C (12)

δ1s = 1 (13)∑
k∈K′

δkt = 1 (14)∑
i∈V

δki ≤ 1 k ∈ K (15)∑
k∈k

δki ≤ 1 i ∈ V (16)∑
k∈k

diδ
k
i ≤ Dtl i ∈ V (17)∑

i∈C
zki ≤ Cap k ∈ K \ {1} (18)

yki ≤
k∑

l=1

zli i ∈ C k ∈ K (19)

yki ≤
∑
j∈V

δkj i ∈ C k ∈ K (20)

δki ≤ yki i ∈ C k ∈ K (21)

The objective function (1) minimizes the arrival time of the truck at the depot after the last
resupply is performed (i.e., the completion time). The set of routing constraints (2-7) impose
that a single path serving all the customers is performed by the truck, regardless of the number
of resupplies. The set of synchronization constraints (8-12) ensures consistency between the start
and end of each resupply, the travel and service times, and the customer release dates. The set
of resupply constraints (13-21) guarantees the feasibility of each resupply and account for the
number of packages loaded onto the drone.

The proposed formulation contains an exponential number of constraints due to the subtour
elimination constraints (7). Therefore, we developed a B&C algorithm that dynamically intro-
duces such constraints in a lazy fashion. Moreover, the B&C effectiveness is further improved
by the integration of the following valid inequalities:∑
(i,j)∈Cutpq

xkij +
∑

(j,i)∈Cutqp

xkji ≥ ykp + ykq − 1 p, q ∈ C k ∈ K, (22)

where Cutpq is a generic cut on the graph G between the nodes p and q. They impose that if
two nodes are served after the same resupply there should be a path connecting them. These are
separated by max-flow-min-cut procedure and added at the root node of the enumeration tree.

3 PRELIMINARY RESULTS AND CONCLUSIONS

The proposed B&C algorithm has been tested on instances derived from Solomon (1987) using
the procedure described in Archetti et al. (2018) for the TSPRD. We considered four instances
(C101, C201, R101, RC101) and, for each of them, we generated TSPRD-DR instances with 10
and 15 customers. Then, for each customer, we generated release dates using the parameter β to
tune the range of release date intervals (Archetti et al., 2018). Such parameter assumes 6 different
values, yielding a total of 48 instances. In all instances, the drone speed was twice the one of the
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truck, and the drone capacity was set to 4. Finally, the drone endurance was large enough to
allow resupply at any node in the instance. We compared the TSPRD-DR solution with the one
of the TSPRD. The TSPRD optimal solutions were obtained by solving the formulation given in
Archetti et al. (2018). The B&C algorithm was coded in Python, using Gurobi 11.0 with default
settings as MILP solver, imposing a computation time limit of one hour. The experiments
were conducted on an Intel(R) Core(TM) i7-8700, 3.20 GHz, 16.00 GB RAM. Table 1 presents
experimental results comparing TSPRD-DR with TSPRD. The "Savings" column shows average
percentage savings from drone resupply versus truck resupply, while "Time-TR" and "Time-DR"
report the average runtimes for TSPRD and TSPRD-DR formulations, respectively. Each row
represents an average of four instances.

Table 1 – Results on instances with 10 and 15 customers

|C| =10 |C| =15
β Saving Time-TR Time-DR Saving Time-TR Time-DR
0.5 19.49 0.24 1.57 23.00 3.22 50.71
1 17.00 0.54 4.32 14.83 5.44 288.47

1.5 11.40 0.63 17.59 13.61 10.34 738.05
2 9.77 0.78 26.00 10.82 9.38 1520.70

2.5 7.50 0.86 18.18 8.06 11.93 1838.32
3 6.21 0.80 5.75 9.61 11.30 1486.66

We can observe that using the drone for resupply can lead to significant savings. Specifically,
when packages become available quickly at the depot (i.e., for low values of β), larger savings are
achieved. This can be attributed to the drone’s superior speed compared to the truck, allowing
it to swiftly reach the depot, collect newly available packages, and return to the truck efficiently.
Another observation concerns the running times. The TSPRD-DR requires significantly longer
computation times compared to the TSP-RD, by at least an order of magnitude. This highlights
the complexity of the TSPRD-DR, particularly for large-size instances. Consequently, even
if our formulation outperforms the one by Pina-Pardo et al. (2021) in the number of solved
instances and computation time, future research should focus on further refining the proposed
exact algorithm to scale for larger instances.
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