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1 INTRODUCTION
Optimizing vehicle-task assignment is a critical challenge in emergency medical services (EMS), logis-
tics, and ride-sharing, with major implications for operational efficiency, response times, and ultimately,
life-saving outcomes (Alonso-Mora et al., 2017). In EMS, efficient assignment of emergency vehicles
to tasks—based on real-time data and varying task (referred to as "incidents" in EMS contexts) priori-
ties—is essential for improving patient survival rates and minimizing response times. As demand for EMS
continues to rise in densely populated areas, traditional methods like linear programming and heuristic
algorithms often struggle to adapt to the complex and dynamic nature of EMS environments (Liu et al.,
2024). These methods may lack the scalability and flexibility to handle real-time traffic conditions, varied
vehicle capabilities, and task urgency levels, all of which impact response times and service efficacy.

Recent machine learning approaches, particularly those utilizing homogeneous feature spaces, have
shown potential for enhancing vehicle-task assignments in EMS. However, they typically fall short in
adapting to the heterogeneous features inherent in EMS, such as specific medical equipment requirements,
task priority, and dynamic traffic data (Qin et al., 2020, Paul et al., 2024). Graph Neural Networks
(GNNs), due to their ability to model relational data, offer promise for EMS applications but remain
underutilized in vehicle-task assignment settings (Wu et al., 2020, Dai et al., 2021). In this study, we
introduce a framework centered on Aggregated Knowledge Learning (AKL), a novel training method that
leverages the outputs from various assignment models, including the Hungarian and Pareto methods, to
create a robust GNN-based model for EMS vehicle-task assignments. The AKL approach enhances the
model’s adaptability to dynamic and heterogeneous EMS scenarios, addressing limitations in traditional
and existing machine learning-based methods.

2 METHODOLOGY
In this section, we present our methodology for optimizing vehicle-task assignments in dynamic trans-
portation networks. We begin by formulating the problem, carefully defining all notations and parameters
used throughout. We then introduce the Aggregated Knowledge Learning (AKL) framework, which aggre-
gates insights from traditional models to generate high-quality training data. Subsequently, we describe
both the proposed learning model, which utilizes Graph Neural Networks (GNNs), and the traditional
assignment models used for comparison. Detailed explanations are provided for each component, ensuring
clarity and coherence.
2.1 PROBLEM FORMULATION
Vehicle Assignment: A(t) is the assignment matrix at time t. A

(t)
v,i in Equation 1 indicates the match

status whether vehicle v is assigned to task i at time t.

A
(t−1)
v,i =

{
1, if vehicle v is assigned to task i at time t,

0, otherwise.
(1)

Efficiently assigning vehicles to tasks in transportation networks is essential for optimizing operational
performance metrics such as response time and service quality. This problem is inherently dynamic due
to the continuous arrival of new tasks and changes in vehicle availability. Our objective is to develop a
model that adapts to these changes and maximizes the overall system benefit.

We denote v as the set of vehicles and V is the vehicle set where v ∈ V . Similarly, i presents the
incident and I is the set of incident i. The available vehicles and incidents are different at each time.
Here we use T to present the timeline, and t ∈ T is the discrete time point.
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At each time t, we have a set of feasible assignments between vehicles and tasks, denoted by E(t) ⊆
V × I.

For each vehicle-task pair (v, i) at time t, we define R
(t)
v,i and S

(t)
v,i are the travel time are survival rate

for vehicle v to reach task i at time t respectively.
The decision variable is x

(t)
v,i, where

• x
(t)
v,i ∈ {0, 1}: indicates if vehicle v is assigned to task i at time t (1 if assigned, 0 otherwise).

Objective Function: Our objective is to maximize the total benefit B over the entire simulation period.
Each task’s benefit is considered only once, at the time it is last assigned, to prevent double-counting.

Let vi be the vehicle assigned to task i, and T assign
i be the time when vehicle vi was last assigned to

task i. The total benefit B is:

max
x

B =
∑
i∈I

(
β1S

(T assign
i )

vi,i
− β2R

(T assign
i )

vi,i

)
. (2)

β1 is the weight of the survival rate or service benefit and the coefficient β2 represents the importance
of the response time. β1 >> β2 in this research.

Assignment Constraints: Each vehicle can be assigned to at most one task at any given time:∑
i∈I

x
(t)
v,i ≤ 1, ∀v ∈ V,∀t ∈ T. (3)

Each task can be assigned to at most one vehicle at any given time:∑
v∈V

x
(t)
v,i ≤ 1, ∀i ∈ I, ∀t ∈ T. (4)

2.2 AGGREGATED KNOWLEDGE LEARNING FRAMEWORK
The aggregated knowledge learning (AKL) framework generates a high-quality training dataset by ag-
gregating assignment decisions from multiple traditional models. The best-performing model in each
simulation, based on total benefit, provides the assignment decisions used for training.

Rationale: Evaluating models based on overall performance over the simulation period accounts for
the cascading effects of decisions in a dynamic environment.

AKL Process:

1. Simulations with Random Seeds: Run S independent simulations, each with a unique random
seed s ∈ {1, 2, . . . , S}.

2. Application of Traditional Models: In each simulation s, apply a set of traditional assignment
models M = {M1,M2,M3}. The models we use in this study include Hungarian algorithm, No
Reassignment Policy and Pareto improvement criterion.

3. Model Evaluation: For each model Mj ∈ M, calculate the total benefit B
(s)
Mj

using (2).

4. Selection of Best Model: Choose the best-performing model M∗(s) in simulation s:

M∗(s) = arg max
Mj∈M

B
(s)
Mj

.

5. Aggregation of Assignment Decisions: Collect assignment decisions x
(t,s)
v,i from M∗(s) at each

time t.

6. Formation of Training Dataset: Aggregate data D from all simulations D(s) for each s:

D =

S⋃
s=1

D(s),

where

D(s) =

{(
F

(t,s)
v,i , y

(t,s)
v,i

) ∣∣∣∣ (v, i) ∈ E(t), t ∈ T

}
,
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E(t) is the simulation experiment running at time t. (v, i) is available vehicle-task pair at the
situation E(t). F

(t,s)
v,i is feature vector for vehicle-task pair (v, i) at time t in simulation s. y

(t,s)
v,i =

x
(t,s)
v,i denotes assignment decision from M∗(s).

7. Model Training: Implement supervised learning method to train the core model (GNN in this
case study) based on the collected data from step 6.

3 RESULTS AND DISCUSSION
We simulate dynamic EMS operations in Sydney Australia using a road network constructed from Open-
StreetMap and travel times obtained from CompassIoT data. Incidents are generated stochastically based
on population density, and vehicles are categorized by equipment level (e.g., CCPR, ECPR). Survival
functions vary by vehicle-task compatibility and delay. The GNN model, trained using AKL on 200
simulation runs, is benchmarked against the three baseline models.
3.1 PERFORMANCE EVALUATION
Using AKL, the GNN model consistently surpasses traditional methods in maximizing survival rates and
minimizing response times in ambulance system. Figure 1 shows the survival rate and response time
performance across 10 simulations with 10 vehicles and 30 incidents over 8 hours.

(a) Survival Rate (b) Response Time

Figure 1 – Performance Comparison with 30 Incidents and 10 Vehicles

In Figure 1a, the Learning model (GNN with AKL training approach) achieves the highest median
survival rate of 11.5%, significantly outperforming the Hungarian model (9.7%), Pareto model (7.9%),
and Basic model (5.3%). The lower quartile of the Learning model also surpasses the median survival
rates of the Hungarian and Pareto models, demonstrating superior performance even in less favorable
scenarios.

Figure 1b presents the response time results. The Learning model achieves the lowest median response
time of 13.3 minutes, markedly outperforming the Basic/no re-assignment model (20.4 minutes),
Hungarian model (16.2 minutes), and Pareto model (16.4 minutes). The Learning model also exhibits
a tighter interquartile range compared to the Hungarian model, indicating more consistent and reliable
performance across different scenarios.
3.2 SCALABILITY WITH INCIDENT VOLUME
AKL’s scalability was tested across scenarios with 30, 40, and 50 incidents, as shown in Figure 2. The GNN
model, leveraging AKL, maintained the highest survival rates and shortest response times, demonstrating
its robustness and adaptability under varying load conditions.

In Figure 2a, the Learning model maintains the highest median survival rates across all incident
volumes: 11.5% for 30 incidents, 9.4% for 40 incidents, and 7.1% for 50 incidents. These values
significantly outperform the Hungarian model (9.7%, 8.1%, 5.6%), Pareto model (7.9%, 7.7%, 6.8%),
and Basic model (5.3%, 4.8%, 4.3%) at corresponding incident levels.

Similarly, in terms of response time (Figure 2b), the Learning model achieves the lowest median
response times: 13.3 minutes for 30 incidents, 14.7 minutes for 40 incidents, and 23.8 minutes for 50
incidents. In contrast, the Basic model records the longest response times, increasing from 20.4 minutes
to 29.2 minutes as incidents increase. The Hungarian model shows a significant rise in response time
at 50 incidents (42.4 minutes), indicating scalability issues under higher demand.
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(a) Survival Rate Across Incident Volumes (b) Response Time Across Incident Volumes

Figure 2 – Scalability of AKL Model with Increasing Incidents

3.3 PERFORMANCE IMPLICATIONS
The strong inverse correlation between survival rates and response times highlights the effectiveness of the
AKL-based model. Figures 2a and 2b show that as incident volume increases, the AKL model consistently
delivers superior survival rates and reduced response times, proving its scalability and robustness.

In comparison, the Basic model’s low survival rates and high response times reveal its limitations
in dynamic scenarios. While the Hungarian model achieves moderate survival rates, its scalability is
limited under high-demand conditions, and the Pareto model offers a balance but does not reach the
performance levels of AKL. The Learning model’s adaptability under varying loads suggests that it is
particularly well-suited to the unpredictable demands of emergency medical services.

4 CONCLUSION
This study presents a novel framework that combines the structural strengths of GNNs with the flexibility
of Aggregated Knowledge Learning (AKL) for dynamic vehicle-task assignment. By learning from the
best-performing traditional model in each simulation, AKL enables the GNN to capture diverse, context-
specific policies, resulting in robust and adaptive performance.

AKL’s modular design allows future integration of more advanced models, including reinforcement
learning or larger neural architectures, without altering the training process. It also exhibits knowledge
distillation properties, enabling smaller, efficient learners to approximate complex policies. Compared
to reinforcement learning, this supervised approach significantly reduces training time while maintain-
ing strong decision quality in dynamic, heterogeneous environments. The framework is scalable and
generalizable to various domains such as EMS, ride-hailing, and disaster response.
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