
Communication-free Distributed Model Predictive Control for
Autonomous Vehicles at Lane-free and Signal-free Intersections

Alireza Soltani∗, David M. Levinson, and Mohsen Ramezani

The University of Sydney, School of Civil Engineering, Sydney, NSW 2006, Australia

Extended abstract submitted for presentation at the 12th Triennial Symposium on
Transportation Analysis conference (TRISTAN XII)

June 22-27, 2025, Okinawa, Japan

February 27, 2025

Keywords: Automated vehicles, Signal-free Intersection, Decentralized agent, Lane-free Traffic

1 INTRODUCTION

The rapid advance of autonomous vehicle (AV) technology has set the stage for innovative traffic
management approaches that can significantly reduce congestion and enhance road safety. One
promising approach is the operation of AVs in lane-free environments (Sekeran et al., 2022),
particularly at intersections, which are major bottlenecks in urban traffic systems. These con-
figurations aim to increase throughput, reduce delays, and improve overall traffic efficiency by
eliminating dependencies on traffic signals and lane-based navigation.

Signal-free intersections, where connected and automated vehicles (CAVs) operate without
traffic signals, can improve traffic flow and reduce fuel consumption by enabling vehicles to move
freely over a two-dimensional surface. This approach aligns with the “TrafficFluid” paradigm
(Papageorgiou et al., 2021), which combines lane-free driving with “vehicle nudging” (Yanumula
et al., 2023) to enhance traffic stability and capacity.

While centralized control methods have been studied for such systems (Naderi et al., 2024),
they often face scalability and computational feasibility challenges, particularly when managing
a large number of vehicles. To address these issues, decentralized or distributed control methods
are being increasingly explored (Naderi et al., 2023). Each vehicle makes independent decisions
in these approaches, balancing collision avoidance and optimal navigation without centralized
coordination.

Distributed model predictive control (MPC) has been shown to be an effective tool for manag-
ing AV dynamics in a distributed manner in simulation (Bemporad et al., 2010). MPC optimizes
vehicle trajectories over a predictive horizon, ensuring smooth, efficient, and collision-free nav-
igation. Prior studies have tested its effectiveness in controlling vehicle dynamics for lane-free
roads, urban roundabouts, and intersections (Yanumula et al., 2021). However, most implemen-
tations depend on inter-vehicle communication to exchange real-time information, which can be
impractical due to communication lags, unreliability, or infrastructure constraints.

We propose a novel distributed MPC framework for AVs at lane-free, signal-free intersections
that operate without communication, relying only on onboard sensors. This approach allows each
AV to detect positions and speeds of nearby AVs, making autonomous decisions that enhance
robustness and reduce infrastructure dependence. By adopting a lane-free paradigm, AVs dy-
namically adjust their trajectories for optimal space use, achieving real-time collision avoidance.
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Each AV manages its own MPC independently, enabling faster, scalable performance without
the computational burden of centralized control.

2 METHODOLOGY

This section outlines the vehicle modeling, dynamic constraints, and the distributed MPC for-
mulation for AVs navigating lane-free, signal-free intersections.

2.1 Vehicle modeling and dynamic constraints

The vehicle dynamics are represented by a simplified kinematic bicycle model, where each ve-
hicle’s state is defined by its position (x, y), heading angle (θ), and speed (v). The control
inputs include acceleration (a) and steering angle (δ), directly influencing the vehicle’s motion
and heading.

Physical limits, including maximum acceleration, steering angle, speed, and road boundaries,
constrain the optimization problem for each AV. The AV state is updated iteratively over discrete
time steps:

xk+1 = xk +∆t · f(xk,uk), k = 0, . . . , N − 1, (1)

where xk = [xk, yk, θk, vk] is the state vector, uk = [ak, δk] is the control vector at time step k,
and f(xk,uk) represents the state transition function based on the kinematic bicycle model. N ,
represents the duration of the decision-making process.

2.2 Distributed MPC formulation

The distributed MPC framework enables each AV to optimize its trajectory within a prediction
horizon independently, facilitating rapid decision-making and effective responses to dynamic
intersection conditions. In the distributed MPC framework, onboard sensors provide real-time
data on nearby AVs positions and speeds, enabling AVs to autonomously adjust their trajectories
without relying on external communication. The cost function (J) for MPC optimization is
designed to achieve multiple objectives simultaneously. It is defined as:
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(2)
where Np is prediction horizon, M is the number of surrounding vehicles, ak is the acceleration,
δk is the steering angle, δdes is the desired steering angle, vk is the speed, dk,i is the distance
to nearby vehicle i, nconflicts is the number of potential conflicts, and tremaining is the remaining
travel time to exit the intersection. The term tmin represents the minimum possible travel time
for a vehicle to clear the intersection.

The cost function components address different aspects of the AV’s behaviour. The first term
minimizes acceleration to improve energy efficiency and comfort, while the second term reduces
deviations from the desired steering angle, contributing to smoother turnings. The third term
aims to maintain a target speed, enhancing traffic flow efficiency. The fourth term enforces safe
distances from adjacent vehicles, while the fifth term estimates potential conflicts by predicting
where and when nearby vehicles may intersect the AV’s path, assuming other vehicles maintain
their current speeds and nominal paths. This term helps the MPC anticipate and mitigate
collision risks despite a short prediction horizon. The final term minimizes travel time to the
intersection exit, guiding AVs toward more time-efficient paths.
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The first three terms are normalized by dividing by the square of their respective maximum
values (amax, δmax, vmax), ensuring that each term contributes proportionally to the overall
optimization. The weights ωi control the relative influence of each objective and are crucial for
tuning the MPC’s performance, allowing adaptation to different traffic scenarios and operational
goals. Constraints are applied to maintain realistic behavior:

amin ≤ ak ≤ amax, (3)
δmin ≤ δk ≤ δmax, (4)

0 ≤ vk ≤ vmax, (5)
xmin ≤ xk ≤ xmax, ymin ≤ yk ≤ ymax. (6)

The distributed nature of this MPC approach allows each AV to function independently,
enhancing scalability and reducing computational burden. The system remains robust without
communication requirements, delivering consistent performance even in environments with unre-
liable connectivity. In our predictions, we assume that all other detected vehicles maintain their
current speed, and their paths toward the intersection exit follow nominal trajectories assigned
based on their current positions. This nominal path represents the most likely route each vehicle
would take, disregarding any adjustments made for conflict resolution.

3 RESULTS

The proposed distributed MPC framework was tested in a simulated environment with two or-
thogonal traffic flows and potential conflict zones at the intersection. The simulation included
108 AVs over 160 seconds, with 12 AVs using distributed MPC in a lane-free manner and 96
AVs following a lane-based, first-come, first-served rule. The MPC-controlled AVs autonomously
optimized their trajectories, navigating independently of other vehicles’ behaviours. The inter-
section was modelled as a 400 m2 square, with AVs measuring 4 m in length and 1.5 m in width.
All AVs started at 15 m/s, with maximum speeds between 13 and 17 m/s, a maximum steering
angle of π/12, and a maximum acceleration/deceleration value of 4 m/s2.

The cost function weights for the distributed MPC were set as ωi = [0.02, 0.01, 10, 2, 100, 100],
corresponding to acceleration, steering, speed deviation, proximity to other vehicles, potential
conflicts, and remaining travel time. The prediction horizon was 3 seconds, with a control horizon
of 1 second. Lane-based AVs followed a coordinated car-following pattern, while MPC-controlled
AVs dynamically adjusted their trajectories. The high vehicle density led to frequent conflicts, es-
pecially for the 12 MPC-controlled AVs, which resolved these interactions autonomously, demon-
strating the framework’s robustness and adaptability.

The speed profiles of MPC-controlled AVs (Fig. 1a) show that most AVs maintained steady
speeds after an initial acceleration or deceleration phase needed to match their maximum speeds
(13–17 m/s). After this adjustment, the distributed MPC ensured smooth trajectories with
minimal fluctuations, even amid potential conflicts. Acceleration profiles (Fig. 1b) demonstrate
the distributed MPC’s ability to resolve conflicts with minor adjustments. Brief acceleration
or deceleration bursts occurred during collision management but quickly stabilized, reflecting
the MPC’s simultaneous optimization of speed and steering. The steering profiles (Fig. 1c)
indicate that AVs primarily used gradual steering adjustments to avoid collisions and utilize
intersection space efficiently. This approach ensured safer, smoother manoeuvres. The time-
to-collision (TTC) analysis in Fig. 1(d) shows that the distributed MPC framework manages
potential collisions effectively, with AVs adjusting trajectories to maintain safe TTC values in
advance. AVs used controlled acceleration as TTC approached lower values. Importantly, the
minimum TTC stayed above 0.5 seconds, confirming no collisions occurred in the system.
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Figure 1 – Speed (a), acceleration (b), and steering (c) profiles show smooth transitions with min-
imal fluctuations, indicating efficient handling of manoeuvres. The time-to-collision (d) shows
that collisions are prevented by manoeuvres in advance, with a minimum TTC of 0.5 seconds,
confirming collision-free operation in the system.

4 DISCUSSION

The distributed MPC framework effectively managed AV interactions in a complex, lane-free,
signal-free environment. Simulations showed that MPC-controlled AVs achieved collision-free
navigation with efficient travel times and smooth trajectories. Despite high vehicle density and
frequent conflicts, the system remained robust, adapting to other vehicles and maximizing inter-
section use. The results highlight the scalability and applicability of the MPC framework.Future
research could enhance decision-making at higher densities and explore integration with other
control strategies to optimize performance.
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