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1 Introduction

Many choice problems in transportation can be modeled as a Markov decision process (MDP).
One classic example is route choice constructed as a sequence of link choices. Specifically, at each
node (state), the traveler chooses the next link (action) that maximizes a sum of the instanta-
neous random link utility (reward) and the expected maximum utility to the destination (value
function). When the random fluctuation in link utility is additive and follows the generalized
extreme value distribution (McFadden, 1981), the choice probability at each node has a closed-
form expression, e.g., the recursive logit models (Fosgerau et al., 2013, Mai, 2016, Oyama, 2023).
Although the modeling framework is flexible, the existing estimation methods for these Marko-
vian choice models all rely on a computationally demanding bi-level procedure (Rust, 1987): the
upper level updates the parameter estimates, and the lower level solves the MDP problem using
value iteration. Furthermore, when the test parameters are badly set, the lower level may fail to
converge (Mai & Frejinger, 2022).

In this study, we propose a novel Markovian choice model based on the perturbed utility
theory (Fosgerau & McFadden, 2012) and develop a highly efficient single-level estimation ap-
proach. At the core of the proposed model is a class of choice probability generation functions
whose gradient directly maps from state-action value (Q-value) functions to a perturbed utility
maximizing policy. Furthermore, the gradient mapping is invertible, a key property that helps
reduce the complexity of model estimation. Remarkably, the estimation of any linear utility
function requires only linear regression.

2 Perturbed utility Markovian choice model

2.1 Preliminaries

Perturbed utility discrete choice models (Fosgerau & McFadden, 2012) assume individuals decide
on their choice probabilities to maximize a perturbed utility defined as the sum of the expected
systematic utility and a convex perturbation function of the choice probabilities. Mathematically,
the choice probabilities x are derived by solving

max
x∈B

v⊤x− F (x), (1)
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where v is the utility vector of alternatives, F denotes the convex perturbation function, and B
is the feasible set of x.

The perturbed utility model (PUM) has been shown to generalize the additive random utility
model (ARUM) (McFadden, 1981). For example, when the perturbation function is the Shannon
entropy, the derived choice probabilities are equivalent to those in MNL. Despite its generality,
determining the choice probabilities of PUM requires solving an optimization problem (1), which
could be cumbersome when a large number of choices must be evaluated or the decision-making
process has a recursive structure. Both of them, however, persist in the Markovian choice model.
To tackle this challenge, we characterize a class of choice probability generation functions and
establish conditions such that their gradient directly gives the optimal choice probabilities.

Let us first define the perturbed utility Markovian choice model. We consider a Markov
decision process (MDP) with some termination state, thus the time horizon can be finite or
infinite. The MDP is defined on a tuple (S,A, P, u, γ), where S is the finite state space, A is the
finite action space, P : S × A → p(S) specifies state transition as the probability of transition
between each pair of states under each action, u ∈ R|S||A| is the systematic utility, and γ ∈ (0, 1]
is the discount factor. For simplicity, we use As to denote the set of available actions at state
s ∈ S and define ∆s = ∆(As), the probability simplex of As.

Following the common framework of MDP, we define value function V : S → R as the
expected cumulative utility from a given state and define Q-value function as Q(s, a) = u(s, a)+
γEs′∼P (·|s,a)[V (s′)]. We further define a state-dependent perturbation function Fs as a convex
function of the conditional choice probability π(·|s) ∈ ∆s, and assume ||∇Fs(π(·|s))|| → ∞ as
π(·|s) approaches the boundary of ∆s. Such a property is also known as essential smoothness in
the literature (Ch. 26 in Rockafellar, 1970) and it has been widely used in choice modeling (e.g.,
Fosgerau et al., 2013). Accordingly, the conditional choice probability under PUMCM solves

max
π(·|s)∈int(∆s)

Ea∼π(·|s) [Q(s, a)]− Fs(π(·|s)), (2)

where int(∆s) denotes the interior of ∆s.

2.2 Choice probability generation function

In brief, a choice probability generation function Hs is a function of Q-values whose gradient
gives the optimal conditional choice probabilities in PUMCM. Therefore, we can bypass solving
(2) and directly obtain the choice probabilities when Q-values are known. The general conditions
for a choice probability generation function are formally stated in the following proposition:

Proposition 1 Suppose a function Hs : R|As| → R defined on a state s ∈ S satisfies: i) twice
continuously differentiable, ii) gradient falls in the interior of simplex ∆s, i.e., ∇Hs(Q(s, ·)) ∈
int(∆s), ∀Q(s, ·) ∈ R|As|, and iii) Hessian matrix ∇2Hs(Q(s, ·)) is positive definite on Ts for all
Q(s, ·) ∈ R|As|, where Ts :=

{
z ∈ R|As||

∑
j zj = 0

}
denotes the tangent space of ∆s. Then, there

exists a convex perturbation function H∗
s : int(∆s) → R, such that the gradient of Hs at Q(s, ·)

solves the perturbed utility maximization problem:

∇Hs(Q(s, ·)) = arg max
π(·|s)∈int(∆s)

Ea∼π(·|s) [Q(s, a)]−H∗
s (π(·|s)). (3)

In other words, ∇Hs(Q(s, ·)) gives the choice probabilities in PUMCM. Moreover, ∇Hs is in-
vertible on Ts and (∇Hs)

−1 ≡ ∇H∗
s : int(∆s) → Ts.

The following corollary describes a particular property that enables efficient estimation:

Corollary 1 Suppose Hs satisfies the conditions listed in Proposition 1. Then, for any Q(s, ·) ∈
R|As|, there exists a constant Ks ∈ R and Q0(s, ·) ∈ Ts such that

Q(s, ·) = Q0(s, ·) +Ks1, (4)
Hs(Q(s, ·)) = Hs(Q0(s, ·)) +Ks. (5)
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2.3 Model estimation

We now proceed to discuss the estimation of a parametric utility function in PUMCM. Suppose
the observed choices follow the optimal conditional choice probabilities π∗. To begin with, we
rewrite the optimal Q-value in the matrix form:

Q∗ = u+ γPV ∗, (6)

where u = (u(s, a))⊤s∈S,a∈As
∈ R|S||As| is the utility vector, P = (P (·|s, a))⊤s∈S,a∈As

∈ R|S||As|×|S|

is the transition matrix, and V ∗ = (V ∗(s))⊤s∈S ∈ R|S| is the vector of optimal values.
Then for each s ∈ S, we have

Q∗(s, ·) = Q∗
0(s, ·) +Ks1 = (∇Hs)

−1(π∗(·|s)) +Ks1 = ∇H∗
s (π

∗(·|s)) +Ks1. (7)

The first equality directly applies the result in Corollary 1, the second evokes the invertibility
of ∇Hs on the tangent space Ts derived in Proposition 1, and the third replaces (∇Hs)

−1 with
its corresponding perturbation function, another result of Proposition 1. In other words, for any
observed π∗, the optimal Q-values are known up to a constant Ks. The following proposition
further demonstrates the optimal values can be revealed from π∗ under mild assumptions.

Proposition 2 Suppose the feasible set of values, M, is compact. Then, for each s ∈ S, there
exists unique V ∗(s) such that V ∗(s) = Hs(Q

∗(s, ·)).

We note that the compactness of M implies V ∗ is bounded, which naturally holds in MDP with
a finite horizon or with a discounted infinite horizon (γ < 1). It is also a reasonable assumption
for undiscounted infinite horizon problems (γ = 1) with termination states (e.g., the destination
in route choice).

Combining all the above analytical results, we have for each s ∈ S,

V ∗(s) = Hs(Q
∗(s, ·)) = Hs(Q

∗
0(s, ·)) +Ks = Hs(∇H∗

s (π
∗(·|s))) +Ks. (8)

Let Q = (∇H∗
s (π

∗(a|s)))⊤s∈S,a∈As
∈ R|S||As| and V = (Hs(∇H∗

s (π
∗(·|s))))⊤s∈S ∈ R|S|, and

Λ ∈ {0, 1}|S||As|×|S|, where Λ(s,a),s = 1, ∀s ∈ S, a ∈ As, and zero, otherwise. Plugging Eqs. (8)
and (7) with their matrix forms into Eq. (6) yields

Q∗ = Q+ ΛK = u+ γP (V +K) ⇒ Q− γPV = u+ (γP − Λ)K = u+ PK, (9)

where P = γP − Λ.
We are now ready to formulate the model estimation problem. With the observed policy

π∗, the presumed generation function Hs and its corresponding perturbation function ∇H∗
s , we

first derived Q and V, then compute Y = Q− γPV. Let the utility function u(Z, β) defined on
attributes Z and parameter β, then Eq. (9) is rewritten as

Y = u(Z, β) + PK. (10)

Eq. (10) can be simplified as JY = Ju(Z, β) by introducing a projection matrix J = B −
(P⊤B)+P⊤B, where B = diag (1π>0) and (·)+ denotes the Moore-Penrose inverse (Fosgerau
et al., 2022). In this way, the constant K is eliminated and the problem further reduces to a
linear regression when the utility function is linear, i.e., u(Z, β) = Zβ.

3 Simulation experiment

We demonstrate the proposed PUMCM and its estimation using a simple route choice problem
on a 13× 13 bidirectional grid network. The state and action spaces correspond to the node and
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link sets, respectively, and the state transition is accordingly the link-node incident matrix. We
consider a linear link utility function u(Z, β) = Zβ, where the true values of β are reported in
Table 1 and attributes Z are uniformly sampled between [15, 45]. Finally, the discount factor is
set to γ = 1 following the literature on route choice.

A synthetic dataset of route choices is generated by performing random walks from 1000
randomly selected origins to a single destination. We consider the choice probability generation
function Hs(Q(s, ·)) = ln(

∑
exp(Q(s, ·))), which leads to the recursive logit model (Fosgerau

et al., 2013, Mai, 2016, Oyama, 2023), and solve the optimal routing policies via value iterations.

Table 1 – Mean and stdev. (in brackets) of parameter estimates over 10 replications.

β1 β2 β3

True β -0.0500 -0.1000 0.0500

β̂,∀ u∗ ≤ 0 -0.0496 -0.0990 0.0480
(0.0040) (0.0031) (0.0020)

β̂,∃ u∗ > 0 -0.0482 -0.0937 0.0439
(0.0011) (0.0034) (0.0026)

We consider two scenarios: a default scenario where all link utilities are non-positive (non-
negative travel costs), and a less common scenario where some links have positive utilities but
the optimal values are bounded (no infinite loop). As shown in Table 1, the parameter estimates
β̂ are close to the true values in both scenarios.

4 Conclusion

This paper proposes the perturbed utility Markovian choice model (PUMCM), where sequential
decisions are modeled as a Markov decision process and maximize a perturbed utility at each
state. A class of choice probability generation functions is characterized, whose gradient is
the optimal policy. An efficient estimation approach is then developed and demonstrated via
numerical experiments. To the best of our knowledge, both PUMCM and its estimation are
novel and complement their static counterpart (Fosgerau et al., 2022, Yao et al., 2024).
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