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1 INTRODUCTION

Vehicle Routing Problems (VRPs) optimize delivery routes for vehicle fleets. While the Heteroge-
neous Capacitated Vehicle Routing Problem (HCVRP) considers vehicles with varying capacities,
we propose the Profiled Vehicle Routing Problem (PVRP), which adds vehicle-client-specific op-
erational constraints. Due to its NP-hard nature, large instances rely on heuristic solutions,
though these face scalability challenges.

Recent advances in reinforcement learning (RL) offer promising alternatives for combina-
torial optimization. RL can learn effective solutions through simulated environments without
domain expertise and potentially outperform traditional heuristics in complex scenarios. Most
approaches use pointer networks, encoding input data for fast autoregressive decoding. While
learning-based methods have succeeded in various VRPs, including multi-agent and heteroge-
neous agent scenarios, they still have not addressed per-client agent heterogeneity.

We propose the Collaborative Attention Model with Profiles (CAMP), a multi-agent rein-
forcement learning approach for PVRP. CAMP extends the attention-based encoder-decoder
framework by incorporating vehicle-client profiles and enabling collaborative decision-making
through specialized communication layers. The model uniquely processes profiled client repre-
sentations per vehicle and uses a parallel pointer mechanism to evaluate profile-based actions.

Our main contributions are:

• We introduce the Profiled Vehicle Routing Problem (PVRP), a generalization of HCVRP
that incorporates vehicle profiles with client-specific preferences and operational constraints.

• We propose CAMP, a novel multi-agent reinforcement learning approach for PVRP that
integrates vehicle and client profiles into an attention-based encoder-decoder framework
for collaborative decision-making.

• We introduce a specialized attention-based communication architecture that processes pro-
filed client representations per vehicle and enables cooperative decisions through a parallel
pointer mechanism.

• We evaluate CAMP on multiple PVRP variants including PVRP with Preferences (PVRP-
P) and PVRP with Zone Constraints (PVRP-ZC), demonstrating competitive performance
against both classical methods and neural multi-agent models.
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2 METHODOLOGY

2.1 Formulation of PVRP
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Figure 1 – Practical examples of PVRPs.

Consider a VRP with node set N including
depot (0) and clients, and vehicle set K. Each
client i has demand di and location si, while
each vehicle k has capacity Qk, speed sk, and
a profile parameter vector pk defining its re-
lationship with each client. The objective
minimizes the total travel cost while consider-
ing profile-specific preferences. We study two
variants: (1) PVRP with Preferences (PVRP-
P), where pik represents preference scores be-
tween vehicles and clients, balancing route ef-
ficiency with preferences using parameter α;
and (2) PVRP with Zone Constraints (PVRP-
ZC), where pik enforces zone-based restrictions by setting pik = −∞ when vehicle k is prohibited
from serving client i. Standard VRP constraints apply, including capacity limits, single-visit
requirements, and flow conservation.

2.2 Modeling PVRP with MARL

We formulate PVRP as a Markov Decision Process (MDP) M = S,A, τ, r, where the state
st = (Vt, Xt) comprises vehicle states Vt and node states Xt. Each vehicle state vkt includes
remaining capacity okt , travel time T k

t , partial route Gk
t , and profile parameters pk. Node states

xit contain location si and remaining demand dit.

2.2.1 Action Space and State Transitions

Actions at = (vkt , x
j
t ) represent vehicle-node assignments. The state transition function updates

vehicle and node states accordingly: st+1 = (Vt+1, Xt+1) = τ(Vt, Xt, at). For PVRP-P and
PVRP-ZC variants, transitions differ in handling profile parameters pik: PVRP-P: pik represents
preference scores; PVRP-ZC: pik is binary, masking invalid vehicle-client assignments.

2.2.2 Reward Structure and Optimization

The reward function provides terminal rewards based on variant-specific objectives:

R(sT ) =
∑
k∈K

∑
(i,j)∈Gk

T

(αpik −
cij
sk

) for PVRP-P (1)

R(sT ) = −
∑
k∈K

∑
(i,j)∈Gk

T

cij
sk

for PVRP-ZC (2)

Following the autoregressive sequence generation paradigm, we construct solutions by encoding
problem instances x as h = fθ(x) and decoding actions sequentially:

πθ(a|x) =
T−1∏
t=1

gθ(at|at−1, ..., a0,h) (3)

2.3 Collaborative Attention Model with Profiles

CAMP adopts a parallel autoregressive approach for PVRP, where multiple vehicles make deci-
sions simultaneously. The model consists of a profile-aware encoder and a collaborative decoder,

TRISTAN XII Symposium Original abstract submittal



3

Vehicle 1

Vehicle m
...

Cl
ie

nt
 1

Cl
ie

nt
 n

..
.

Cl
ie

nt
 2

Vehicles
Profiles

Client 1 ...

Client n ...
...Clients

Features

Vehicle 1 ...

Vehicle m ...
...Vehicles

Features

Instances

Cl
ie

nt
 3

Initial
Embedding 

Profile Embedding Attention

Bi-partite
Graph

Clients
Embeddings

Vehicles
Embeddings

Profile
Embeddings

Encoder

Client

Vehicles 

Hidden States

Embedding

Embedding

Vehicles

Clients 

States

States

States

current_state=i

Communication Layer Multiple Pointer 
Mechanism

MHA

Q

[b, m, d_h]

K V

Norm

MLP

Norm

+

+

Vehicle 1

Vehicle m

…
Vehicle 2

K

Q

V

K

Q

V

K

Q

V

Decoder

Context 

Dynamic
Embedding

Embedding 

Action Probabilities

Priority-based
Conflicts Handler 

Final ActionsEnvironment

Veh.

Cli.

Parallel Updating

reset() step()

Actions

…

Vehicle 1 
Vehicle 2 

Vehicle m

…

Vehicle 1 
Vehicle 2 

Vehicle m

done

[b, m, m+n, d_h]

Figure 2 – Overview of CAMP.

designed to handle vehicle-specific preferences and constraints while enabling inter-vehicle com-
munication.

The encoder processes vehicle profiles through three components: (1) generating initial em-
beddings for vehicles, clients, and their relationships using learned transformations to capture
essential characteristics; (2) employing multi-head attention to process each vehicle’s profile inde-
pendently, maintaining distinct representations; and (3) utilizing bipartite graph message passing
to enable information flow between vehicles and clients, creating interconnected representations
while preserving unique features. The decoder operates in parallel through a specialized pointer
mechanism: it first generates vehicle-specific queries incorporating both static and dynamic in-
formation, then enables inter-vehicle communication through transformer blocks for coordinated
decision-making, and finally selects actions for all vehicles simultaneously using a conflict reso-
lution strategy based on probability scores.

We train CAMP using REINFORCE with a shared baseline to optimize the model’s perfor-
mance across multiple vehicles. For PVRP-P, we introduce reward balancing to handle varying
preference distributions, ensuring fair learning across different scenarios. This approach normal-
izes rewards dynamically during training, preventing bias towards specific preference patterns.

∇θL ≈ 1

B · L

B∑
i=1

L∑
j=1

Gij∇θ log pθ(Aij |xi) (4)

3 RESULTS AND DISCUSSION

We evaluate CAMP on both PVRP-P and PVRP-ZC variants across different preference dis-
tributions (Random, Angle, Cluster, and Zone) with varying numbers of vehicles and clients.
We compare against state-of-the-art classical solvers PyVRP (Wouda et al., 2024) and neural
baselines: ET (Son et al., 2024), a sequential action generator for multi-agent TSP; DPN (Zheng
et al., 2024), which enhances ET with improved route partitioning; 2D-Ptr (Liu et al., 2024),
using a dual-encoder system for HCVRP; and PARCO (Berto et al., 2024), which enables fast
parallel decision-making. Classical solvers run on 16 CPU cores with time limits of 5-10 seconds
per instance, while neural methods are trained on a single RTX 4090 GPU for 100 epochs.

Fig. 3 illustrates the performance between routing costs and preference satisfaction across
different models. For all preference distributions (Random, Angle, Cluster), CAMP consistently
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Figure 3 – Pareto front of the cost of VRP-P against different values of α for different preference
matrix distribution. The left bottom is better.

achieves better Pareto frontiers compared to baselines, demonstrating superior optimization in
both objectives. As the preference weight α increases from 0 to 0.2, CAMP maintains lower
routing costs while achieving higher preference scores. This indicates our model’s ability to
effectively balance operational efficiency with preference satisfaction. Our model demonstrates
particular strength in the high-α regime, where it achieves up to 15% lower costs than the best
baseline while maintaining comparable preference scores. The performance advantage is most
pronounced in structured preferences (Angle, Cluster), where CAMP’s profile-aware architecture
effectively captures and utilizes the underlying preference patterns. These results demonstrate
that CAMP not only achieves state-of-the-art performance but also offers better scalability in
handling complex preference structures.

4 CONCLUSION

We introduced the Profiled Vehicle Routing Problem (PVRP), extending HCVRP to incorporate
client-specific preferences and operational constraints. Our proposed solution, the Collabora-
tive Attention Model with Profiles (CAMP), leverages multi-agent reinforcement learning with
profile-aware attention mechanisms to enable collaborative decision-making among heterogeneous
vehicles. Experimental results on PVRP variants (PVRP-P and PVRP-ZC) demonstrate that
CAMP consistently outperforms both traditional heuristics and neural baselines while maintain-
ing computational efficiency, making it a practical tool for complex routing problems.
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